42 research outputs found
MECHANISM OF UPREGULATION OF PHOSPHATIDYLCHOLINE SYNTHESIS DURING PICORNAVIRUS INFECTION AND ITS ROLE IN THE DEVELOPMENT OF VIRAL REPLICATION ORGANELLES
Picornaviruses are a group of human and animal pathogens capable of inflicting serious public health diseases and economic burdens. Treatments options through vaccines for prevention or antivirals to cure infection are not available for the vast majority of these viruses. These shortcomings, in the development of vaccines or antivirals therapeutic, are linked to the genetic diversity and to an incomplete understanding of the biology of these viruses. Despite the diverse host range, this group of positive-strand RNA viruses shares the same replication mechanisms, including the development of membranous structures (replication organelles) in the cytoplasm of infected cells. The development of these membranous structures, which serve as sites for the replication of the viral RNA genome, has been linked to the hijacking of elements of the cellular membrane metabolism pathways. Here we show that upon picornavirus infection, there is a specific activation of acyl-CoA synthetase enzymes resulting in strong import and accumulation of long chain fatty acids in the cytoplasm of infected cells. We show that the newly imported fatty acids serve as a substrate for the upregulation of phosphatidylcholine synthesis required for the structural development of replication organelles. In this work, we identified that acyl-CoA synthetase long chain 3 (ACSL3) is required for the upregulation of lipids syntheses and the replication of poliovirus. We have shown that the poliovirus protein 2A was required but not sufficient for the activation of import of long chain fatty acids in infected cells. We demonstrated that the fatty acid import is upregulated upon infection by diverse picornaviruses and that such upregulation is not dependent on activation of ER stress response or the autophagy pathways. In this work, we have demonstrated that phosphatidylcholine was required for the structural development of replication organelles. Phosphatidylcholine synthesis was dispensable for the production of infectious particles at high MOI but required at a low MOI for the protection of the replication complexes from the cellular innate immunity mechanisms
The Protein Ontology: a structured representation of protein forms and complexes
The Protein Ontology (PRO) provides a formal, logically-based classification of specific protein classes including structured representations of protein isoforms, variants and modified forms. Initially focused on proteins found in human, mouse and Escherichia coli, PRO now includes representations of protein complexes. The PRO Consortium works in concert with the developers of other biomedical ontologies and protein knowledge bases to provide the ability to formally organize and integrate representations of precise protein forms so as to enhance accessibility to results of protein research. PRO (http://pir.georgetown.edu/pro) is part of the Open Biomedical Ontology Foundry
Norharmane matrix enhances detection of endotoxin by MALDI-MS for simultaneous profiling of pathogen, host, and vector systems
The discovery of novel pathogenic mechanisms engaged during bacterial infections requires the evolution of advanced techniques. Here, we evaluate the dual polarity matrix norharmane (NRM) to improve detection of bacterial lipid A (endotoxin), from host and vector tissues infected with Francisella novicida (Fn). We evaluated NRM for improved detection and characterization of a wide range of lipids in both positive and negative polarities, including lipid A and phospholipids across a range of matrix assisted laser desorption-ionization (MALDI)-coupled applications. NRM matrix improved the limit of detection (LOD) for monophosphoryl lipid A (MPLA) down to picogram-level representing a ten-fold improvement of LOD versus 2,5-dihydroxybenzoic acid (DHB) and 100-fold improvement of LOD versus 9-aminoacridine (9-AA). Improved LOD for lipid A subsequently facilitated detection of the Fn lipid A major ion (m/z 1665) from extracts of infected mouse spleen and the temperature-modified Fn lipid A at m/z 1637 from infected D. variabilis ticks. Finally, we simultaneously mapped bacterial phospholipid signatures within an Fn infected spleen along with exclusively host-derived inositol-based phospholipid (m/z 933) demonstrating co-profiling for the host-pathogen interaction. Expanded use of NRM matrix in other infection models and endotoxin-targeting imaging experiments will improve our understanding of the lipid interactions at the host-pathogen interface
Interaction of Poliovirus Capsid Proteins with the Cellular Autophagy Pathway
The capsid precursor P1 constitutes the N-terminal part of the enterovirus polyprotein. It is processed into VP0, VP3, and VP1 by the viral proteases, and VP0 is cleaved autocatalytically into VP4 and VP2. We observed that poliovirus VP0 is recognized by an antibody against a cellular autophagy protein, LC3A. The LC3A-like epitope overlapped the VP4/VP2 cleavage site. Individually expressed VP0-EGFP and P1 strongly colocalized with a marker of selective autophagy, p62/SQSTM1. To assess the role of capsid proteins in autophagy development we infected different cells with poliovirus or encapsidated polio replicon coding for only the replication proteins. We analyzed the processing of LC3B and p62/SQSTM1, markers of the initiation and completion of the autophagy pathway and investigated the association of the viral antigens with these autophagy proteins in infected cells. We observed cell-type-specific development of autophagy upon infection and found that only the virion signal strongly colocalized with p62/SQSTM1 early in infection. Collectively, our data suggest that activation of autophagy is not required for replication, and that capsid proteins contain determinants targeting them to p62/SQSTM1-dependent sequestration. Such a strategy may control the level of capsid proteins so that viral RNAs are not removed from the replication/translation pool prematurely
Phospholipid synthesis fueled by lipid droplets drives the structural development of poliovirus replication organelles.
Rapid development of complex membranous replication structures is a hallmark of picornavirus infections. However, neither the mechanisms underlying such dramatic reorganization of the cellular membrane architecture, nor the specific role of these membranes in the viral life cycle are sufficiently understood. Here we demonstrate that the cellular enzyme CCTĪ±, responsible for the rate-limiting step in phosphatidylcholine synthesis, translocates from the nuclei to the cytoplasm upon infection and associates with the replication membranes, resulting in the rerouting of lipid synthesis from predominantly neutral lipids to phospholipids. The bulk supply of long chain fatty acids necessary to support the activated phospholipid synthesis in infected cells is provided by the hydrolysis of neutral lipids stored in lipid droplets. Such activation of phospholipid synthesis drives the massive membrane remodeling in infected cells. We also show that complex membranous scaffold of replication organelles is not essential for viral RNA replication but is required for protection of virus propagation from the cellular anti-viral response, especially during multi-cycle replication conditions. Inhibition of infection-specific phospholipid synthesis provides a new paradigm for controlling infection not by suppressing viral replication but by making it more visible to the immune system
Increased Long Chain acyl-Coa Synthetase Activity and Fatty Acid Import Is Linked to Membrane Synthesis for Development of Picornavirus Replication Organelles
<div><p>All positive strand (+RNA) viruses of eukaryotes replicate their genomes in association with membranes. The mechanisms of membrane remodeling in infected cells represent attractive targets for designing future therapeutics, but our understanding of this process is very limited. Elements of autophagy and/or the secretory pathway were proposed to be hijacked for building of picornavirus replication organelles. However, even closely related viruses differ significantly in their requirements for components of these pathways. We demonstrate here that infection with diverse picornaviruses rapidly activates import of long chain fatty acids. While in non-infected cells the imported fatty acids are channeled to lipid droplets, in infected cells the synthesis of neutral lipids is shut down and the fatty acids are utilized in highly up-regulated phosphatidylcholine synthesis. Thus the replication organelles are likely built from <i>de novo</i> synthesized membrane material, rather than from the remodeled pre-existing membranes. We show that activation of fatty acid import is linked to the up-regulation of cellular long chain acyl-CoA synthetase activity and identify the long chain acyl-CoA syntheatse3 (Acsl3) as a novel host factor required for polio replication. Poliovirus protein 2A is required to trigger the activation of import of fatty acids independent of its protease activity. Shift in fatty acid import preferences by infected cells results in synthesis of phosphatidylcholines different from those in uninfected cells, arguing that the viral replication organelles possess unique properties compared to the pre-existing membranes. Our data show how poliovirus can change the overall cellular membrane homeostasis by targeting one critical process. They explain earlier observations of increased phospholipid synthesis in infected cells and suggest a simple model of the structural development of the membranous scaffold of replication complexes of picorna-like viruses, that may be relevant for other (+)RNA viruses as well.</p></div
Poliovirus infection induces strong activation of fatty acid import.
<p>HeLa cells were infected with poliovirus at 50 PFU/cell, and at 4 h p. i. Bodipy 500/510 C4āC9 (bodipy-FA) was added for 30 min. <b>A</b>. low magnification view of infected vs mock-infected cells. <b>B</b>. FACS analysis of the fluorescence of infected (mock-infected) cells after 30 min pulse label with bodipy-FA at 4 h p. I, or control samples incubated without bodipy-FA. <b>C</b>. Higher magnification image showing that bodipy-FA probe is redistributed preferentially into lipid droplets in mock-infected cells and into membranes in infected cells. <b>D</b>. A confocal image of HeLa cells expressing pmCherry-ADRP protein (a marker for lipid droplets) and labeled with bodipy-FA for 30 min. Arrow marks a lipid droplet that did not accumulate the newly-synthesized lipids during the labeling period and also indicate lack of bodipy fluorescence leakage into the red channel. <b>E</b>. A confocal image of infected (mock-infected) HeLa cells labeled at 4 h p. i. with bodipy-FA and Hoechst-33342 (cell permeable DNA stain) for 30 min showing localization of bodipy-FA staining. <b>F</b>. A confocal image of polio-infected HeLa cells incubated for 30 min with bodipy-FA at 4 h.p.i. and processed for staining for a viral membrane-targeted protein 2B showing co-localization of the viral antigen and imported FA. Colocalization panel shows colocalized green and blue pixels identified with ImageJ software.</p
Cleavage and redistribution of long chain acyl-CoA synthetases in infected cells and requirement of functional Acsl3 for polio replication and FA import.
<p><b>A</b>. HeLa cells infected at 50 PFU/cells were incubated for 2, 4, and 6 hours post infection and collected for Western blot after permeabilization with digitonin for 5 min at room temperature (lanes 5ā8); control cells (lanes 1ā4) underwent the same treatment but without the detergent. Proteins were detected by multiple western blots of the same membrane after stripping of previous antibodies. Actin is shown as loading control. <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1003401#s2" target="_blank">Results</a> from a representative experiment are shown. Arrows indicate cleavage products detected with anti-FATP3 and Acsl3 antibodies. Arrowhead points to the loss of FATP3 after digitonin treatment from infected cells. <b>B</b>. Acsl3 knock-down severely impairs polio replicon replication (top panel) while showing minimal cytotoxicity (lower panel). siRNA knock-down efficiency of Acsl3 protein is shown. <b>C</b>. Expression of a fusion protein GFP-Acsl3-HA reduces poliovirus replication. HeLa cells were transfected overnight with either empty pUC plasmid, pEGFP-N1 plasmid or pGFP-Acsl3-HA plasmid. Cells were infected (V) with poliovirus at 50 PFU/cell or mock-infected (M) and collected for analysis at 4 h p.i. Polio 2C band intensity is normalized to the EGFP expressing sample. Expression of GFP-Acsl3 protein is detected with either anti-Acsl3 antibodies (second panel) or anti-GFP antibodies (third panel) which also show expression of EGFP (forth panel). Actin is shown as loading control. <b>D</b>. Knock-down of ACSL3 expression reduces activation of FA import upon expression of poliovirus proteins. HeLa cells were transfected with control or ACSL-3-targeting siRNA and 48 h later they were transfected with the plasmid pTM-2A-3D coding for the entire poliovirus non-structural polyprotein fragment P2P3. The next day expression of polio proteins was induced by infection of cells with vaccinia-T7 virus. Bodipy-FA label was added for 30 min at 4 h post vaccinia-T7 infection. Statistical analysis of ā¼150 cells from each sample shows bodipy-FA signal normalized to poliovirus antigen 2B fluorescence, p value is shown. Western blot shows ACSL3 knock-down, actin is shown as a loading control.</p