2 research outputs found

    Protocetraric and Salazinic Acids as Potential Inhibitors of SARS-CoV-2 3CL Protease: Biochemical, Cytotoxic, and Computational Characterization of Depsidones as Slow-Binding Inactivators

    Get PDF
    The study investigated the inhibitory activity of protocetraric and salazinic acids against SARS-CoV-2 3CL(pro). The kinetic parameters were determined by microtiter plate-reading fluorimeter using a fluorogenic substrate. The cytotoxic activity was tested on murine Sertoli TM4 cells. In silico analysis was performed to ascertain the nature of the binding with the 3CL(pro). The compounds are slow-binding inactivators of 3CL(pro) with a K(i) of 3.95 μM and 3.77 μM for protocetraric and salazinic acid, respectively, and inhibitory efficiency k(inact)/K(i) at about 3 × 10(−5) s(−1)µM(−1). The mechanism of inhibition shows that both compounds act as competitive inhibitors with the formation of a stable covalent adduct. The viability assay on epithelial cells revealed that none of them shows cytotoxicity up to 80 μM, which is well below the K(i) values. By molecular modelling, we predicted that the catalytic Cys145 makes a nucleophilic attack on the carbonyl carbon of the cyclic ester common to both inhibitors, forming a stably acyl-enzyme complex. The computational and kinetic analyses confirm the formation of a stable acyl-enzyme complex with 3CL(pro). The results obtained enrich the knowledge of the already numerous biological activities exhibited by lichen secondary metabolites, paving the way for developing promising scaffolds for the design of cysteine enzyme inhibitors

    Cyclic and Acyclic Amine Oxide Alkyl Derivatives as Potential Adjuvants in Antimicrobial Chemotherapy against Methicillin-Resistant Staphylococcus aureus with an MDR Profile

    No full text
    The dramatic intensification of antimicrobial resistance occurrence in pathogenic bacteria concerns the global community. The revitalisation of inactive antibiotics is, at present, the only way to go through this health system crisis and the use of antimicrobial adjuvants is turning out the most promising approach. Due to their low toxicity, eco-friendly characteristics and antimicrobial activity, amphoteric surfactants are good candidates. This study investigated the adjuvant potentialities of commercial acyclic and newly cyclic N-oxide surfactants combined with therapeutically available antibiotics against MDR methicillin-resistant Staphylococcus aureus (MRSA). The safety profile of the new cyclic compounds, compared to commercial surfactants, was preliminarily assessed, evaluating the cytotoxicity on human peripheral mononuclear blood cells and the haemolysis in human red blood cells. The compounds show an efficacious antimicrobial activity strongly related to the length of the carbon atom chain. In drug–drug interaction assays, all surfactants act synergistically, restoring sensitivity to oxacillin in MRSA, with dodecyl acyclic and cyclic derivatives being the most effective. After evaluating the cytotoxicity and considering the antimicrobial action, the most promising compound is the L-prolinol amine-oxide C12NOX. These findings suggest that the combination of antibiotics with amphoteric surfactants is a valuable therapeutic option for topical infections sustained by multidrug-resistant S. aureus
    corecore