21 research outputs found

    Atomistic Molecular Dynamics Simulations of the Initial Crystallization Stage in an SWCNT-Polyetherimide Nanocomposite

    Get PDF
    Crystallization of all-aromatic heterocyclic polymers typically results in an improvement of their thermo-mechanical properties. Nucleation agents may be used to promote crystallization, and it is well known that the incorporation of nanoparticles, and in particular carbon-based nanofillers, may induce or accelerate crystallization through nucleation. The present study addresses the structural properties of polyetherimide-based nanocomposites and the initial stages of polyetherimide crystallization as a result of single-walled carbon nanotube (SWCNT) incorporation. We selected two amorphous thermoplastic polyetherimides ODPA-P3 and aBPDA-P3 based on 3,3′,4,4′-oxydiphthalic dianhydride (ODPA), 2,3′,3,4′-biphenyltetracarboxylic dianhydride (aBPDA) and diamine 1,4-bis[4-(4-aminophenoxy)phenoxy]benzene (P3) and simulated the onset of crystallization in the presence of SWCNTs using atomistic molecular dynamics. For ODPA-P3, we found that the planar phthalimide and phenylene moieties show pronounced ordering near the CNT (carbon nanotube) surface, which can be regarded as the initial stage of crystallization. We will discuss two possible mechanisms for ODPA-P3 crystallization in the presence of SWCNTs: the spatial confinement caused by the CNTs and π–π interactions at the CNT-polymer matrix interface. Based on our simulation results, we propose that ODPA-P3 crystallization is most likely initiated by favorable π–π interactions between the carbon nanofiller surface and the planar ODPA-P3 phthalimide and phenylene moieties

    The Transport Properties of Semi-Crystalline Polyetherimide BPDA-P3 in Amorphous and Ordered States: Computer Simulations

    No full text
    The effect of polymer chain ordering on the transport properties of the polymer membrane was examined for the semi-crystalline heterocyclic polyetherimide (PEI) BPDA-P3 based on 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA) and diamine 1,4-bis [4-(4-aminophenoxy)phenoxy]benzene (P3). All-atom Molecular Dynamics (MD) simulations were used to investigate the gas diffusion process carried through the pores of a free volume several nanometers in size. The long-term (~30 μs) MD simulations of BPDA-P3 were performed at T = 600 K, close to the experimental value of the melting temperature (Tm ≈ 577 K). It was found during the simulations that the transition of the PEI from an amorphous state to an ordered one occurred. We determined a decrease in solubility for both the gases examined (CO2 and CH4), caused by the redistribution of free volume elements occurring during the structural ordering of the polymer chains in glassy state (Tg ≈ 481 K). By analyzing the diffusion coefficients in the ordered state, the presence of gas diffusion anisotropy was found. However, the averaged values of the diffusion coefficients did not differ from each other in the amorphous and ordered states. Thus, permeability in the observed system is primarily determined by gas solubility, rather than by gas diffusion

    Simulating local mobility and mechanical properties of thermostable polyimides with different dianhydride fragments

    Get PDF
    \u3cp\u3eThe dynamic and mechanical properties of the three thermoplastic polyimides—crystallizable polyimide BPDA-P3 and amorphous polyimides ODPA-P3 and aBPDA-P3—have been simulated using the atomistic molecular dynamics technique. The three simulated polyimides differ in the chemical structure of their corresponding dianhydride fragments. Analyzing the local orientational mobility of different phenylene rings, it has been established that the increase of the glass-transition temperature (T \u3csub\u3eg\u3c/sub\u3e) in the ordered set (Formula presented.) is caused by the slowing down of the phthalimide rings relaxation in the corresponding dianhydride fragments. It has been observed that rather poor mechanical characteristics upon aBPDA-P3 stretching in the strain-hardening regime are also due to the low orientational mobility of the phthalimide rings. The correlation between the dynamic fragility and the polyimides strain-hardening moduli has been observed; the increase of the dynamic fragility leads to the increase of the strain-hardening modulus.\u3c/p\u3

    Structural ordering in SWCNT-polyimide nanocomposites and its influence on their mechanical properties

    No full text
    \u3cp\u3eUsing fully-atomistic models, tens-microseconds-long molecular-dynamic modelling was carried out for the first time to simulate the kinetics of polyimides ordering induced by the presence of single-walled carbon nanotube (SWCNT) nanofillers. Three polyimides (PI) were considered with different dianhydride fragments, namely 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), 2,3',3,4'-biphenyltetracarboxylic dianhydride (aBPDA), and 3,3',4,4'-oxidiphthalic dianhydride (ODPA) and same diamine 1,4-bis[4-(4-aminophenoxy)phenoxy]benzene (diamine P3). Both crystallizable PI BPDA-P3 and two amorphous polyimides ODPA-P3 and aBPDA-P3 reinforced by SWCNTs were studied. The structural properties of the nanocomposites at temperature close to the bulk polymer melting point were studied. The mechanical properties were determined for the nanocomposites cooled down to the glassy state. It was found that the SWCNT nanofiller initiates' structural ordering not only in the crystallizable BPDA-P3 but also in the amorphous ODPA-P3 samples were in agreement with previously obtained experimental results. Two stages of the structural ordering were detected in the presence of SWCNTs, namely the orientation of the planar moieties followed by the elongation of whole polymer chains. The first type of local ordering was observed on the microsecond time scale and did not lead to the change of the mechanical properties of a polymer binder in considered nanocomposites. At the end of the second stage, both BPDA-P3 and ODPA-P3 PI chains extended completely along the SWCNT surface, which in turn led to enhanced mechanical characteristics in their glassy state.\u3c/p\u3

    Molecular dynamics simulations of uniaxial deformation of thermoplastic polyimides

    No full text
    \u3cp\u3eThe results of atomistic molecular-dynamics simulations of mechanical properties of heterocyclic polymer subjected to uniaxial deformation are reported. A new amorphous thermoplastic polyimide R-BAPO with a repeat unit consisting of dianhydride 1,3-bis-(3',4,-dicarboxyphenoxy)diphenyl (dianhydride R) and diamine 4,4'-bis-(4''-aminophenoxy)diphenyloxide (diamine BAPO) was chosen for the simulations. Our primary goal was to establish the impact of various factors (sample preparation method, molecular mass, and cooling and deformation rates) on the elasticity modulus. In particular, we found that the elasticity modulus was only slightly affected by the degree of equilibration, the molecular mass and the size of the simulation box. This is most likely due to the fact that the main contribution to the elasticity modulus is from processes on scales smaller than the entanglement length. Essentially, our simulations reproduce the logarithmic dependence of the elasticity modulus on cooling and deformation rates, which is normally observed in experiments. With the use of the temperature dependence analysis of the elasticity modulus we determined the flow temperature of R-BAPO to be 580 K in line with the experimental data available. Furthermore, we found that the application of high external pressure to the polymer sample during uniaxial deformation can improve the mechanical properties of the polyimide. Overall, the results of our simulations clearly demonstrate that atomistic molecular-dynamics simulations represent a powerful and accurate tool for studying the mechanical properties of heterocyclic polymers and can therefore be useful for the virtual design of new materials, thereby supporting cost-effective synthesis and experimental research.\u3c/p\u3

    Structural ordering in SWCNT-polyimide nanocomposites and its influence on their mechanical properties

    Get PDF
    Using fully-atomistic models, tens-microseconds-long molecular-dynamic modelling was carried out for the first time to simulate the kinetics of polyimides ordering induced by the presence of single-walled carbon nanotube (SWCNT) nanofillers. Three polyimides (PI) were considered with different dianhydride fragments, namely 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), 2,3',3,4'-biphenyltetracarboxylic dianhydride (aBPDA), and 3,3',4,4'-oxidiphthalic dianhydride (ODPA) and same diamine 1,4-bis[4-(4-aminophenoxy)phenoxy]benzene (diamine P3). Both crystallizable PI BPDA-P3 and two amorphous polyimides ODPA-P3 and aBPDA-P3 reinforced by SWCNTs were studied. The structural properties of the nanocomposites at temperature close to the bulk polymer melting point were studied. The mechanical properties were determined for the nanocomposites cooled down to the glassy state. It was found that the SWCNT nanofiller initiates' structural ordering not only in the crystallizable BPDA-P3 but also in the amorphous ODPA-P3 samples were in agreement with previously obtained experimental results. Two stages of the structural ordering were detected in the presence of SWCNTs, namely the orientation of the planar moieties followed by the elongation of whole polymer chains. The first type of local ordering was observed on the microsecond time scale and did not lead to the change of the mechanical properties of a polymer binder in considered nanocomposites. At the end of the second stage, both BPDA-P3 and ODPA-P3 PI chains extended completely along the SWCNT surface, which in turn led to enhanced mechanical characteristics in their glassy state

    Atomistic molecular dynamics simulations of the initial crystallization stage in an SWCNT-polyetherimide nanocomposite

    No full text
    \u3cp\u3eCrystallization of all-aromatic heterocyclic polymers typically results in an improvement of their thermo-mechanical properties. Nucleation agents may be used to promote crystallization, and it is well known that the incorporation of nanoparticles, and in particular carbon-based nanofillers, may induce or accelerate crystallization through nucleation. The present study addresses the structural properties of polyetherimide-based nanocomposites and the initial stages of polyetherimide crystallization as a result of single-walled carbon nanotube (SWCNT) incorporation. We selected two amorphous thermoplastic polyetherimides ODPA-P3 and aBPDA-P3 based on 3,3',4,4'-oxydiphthalic dianhydride (ODPA), 2,3',3,4'-biphenyltetracarboxylic dianhydride (aBPDA) and diamine 1,4-bis[4-(4-aminophenoxy)phenoxy]benzene (P3) and simulated the onset of crystallization in the presence of SWCNTs using atomistic molecular dynamics. For ODPA-P3, we found that the planar phthalimide and phenylene moieties show pronounced ordering near the CNT (carbon nanotube) surface, which can be regarded as the initial stage of crystallization. We will discuss two possible mechanisms for ODPA-P3 crystallization in the presence of SWCNTs: the spatial confinement caused by the CNTs and π-π interactions at the CNT-polymer matrix interface. Based on our simulation results, we propose that ODPA-P3 crystallization is most likely initiated by favorable π-πinteractions between the carbon nanofiller surface and the planar ODPA-P3 phthalimide and phenylene moieties.\u3c/p\u3

    Toward predictive molecular dynamics simulations of asphaltenes in toluene and heptane

    Get PDF
    \u3cp\u3eThe conventional definition of asphaltenes is based on their solubility in toluene and their insolubility in heptane. We have utilized this definition to study the influence of partial charge parametrization on the aggregation behavior of asphaltenes using classical atomistic molecular dynamics simulations performed on the microsecond time scale. Under consideration here are toluene- and heptane-based systems with different partial charges parametrized using the general AMBER force field (GAFF). Systems with standard GAFF partial charges calculated by the AM1-BCC and HF/6-31G*(RESP) methods were simulated alongside systems without partial charges. The partial charges implemented differ in terms of the resulting electrical negativity of the asphaltene polyaromatic core, with the AM1-BCC method giving the greatest magnitude of the total core charge. Based on our analysis of the molecular relaxation and orientation, and on the aggregation behavior of asphaltenes in toluene and heptane, we proposed to use the partial charges obtained by the AM1-BCC method for the study of asphaltene aggregates. A good agreement with available experimental data was observed on the sizes of the aggregates, their fractal dimensions, and the solvent entrainment for the model asphaltenes in toluene and heptane. From the results obtained, we conclude that for a better predictive ability, simulation parameters must be carefully chosen, with particular attention paid to the partial charges owing to their influence on the electrical negativity of the asphaltene core and on the asphaltenes aggregation.\u3c/p\u3

    Toward predictive molecular dynamics simulations of asphaltenes in toluene and heptane

    No full text
    The conventional definition of asphaltenes is based on their solubility in toluene and their insolubility in heptane. We have utilized this definition to study the influence of partial charge parametrization on the aggregation behavior of asphaltenes using classical atomistic molecular dynamics simulations performed on the microsecond time scale. Under consideration here are toluene- and heptane-based systems with different partial charges parametrized using the general AMBER force field (GAFF). Systems with standard GAFF partial charges calculated by the AM1-BCC and HF/6-31G*(RESP) methods were simulated alongside systems without partial charges. The partial charges implemented differ in terms of the resulting electrical negativity of the asphaltene polyaromatic core, with the AM1-BCC method giving the greatest magnitude of the total core charge. Based on our analysis of the molecular relaxation and orientation, and on the aggregation behavior of asphaltenes in toluene and heptane, we proposed to use the partial charges obtained by the AM1-BCC method for the study of asphaltene aggregates. A good agreement with available experimental data was observed on the sizes of the aggregates, their fractal dimensions, and the solvent entrainment for the model asphaltenes in toluene and heptane. From the results obtained, we conclude that for a better predictive ability, simulation parameters must be carefully chosen, with particular attention paid to the partial charges owing to their influence on the electrical negativity of the asphaltene core and on the asphaltenes aggregation

    Asphaltenes as novel thermal conductivity enhancers for liquid paraffin: Insight from in silico modeling

    Get PDF
    The practical use of paraffin and other organic phase-change materials for heat storage is largely limited by their low thermal conductivity. In this paper we employed 60 microsecond-long atomic-scale computer simulations to explore for the first time whether the asphaltenes, natural polycyclic aromatic hydrocarbons, can be used as thermal conductivity enhancers for paraffin. We focused on a simple model molecule of asphaltene (a polycyclic aromatic core decorated with the peripheral alkane chains) and showed that the asphaltenes of such molecular architecture are not able to improve the thermal conductivity of paraffin. This is most likely due to the steric constraints imposed by the peripheral alkane groups, which prevent formation of the extended ordered asphaltene aggregates. To overcome this, we proposed a possible chemical modification of the asphaltene molecules through removing the peripheral alkane groups from their aromatic cores; this could be achieved e.g. by thermal cracking (dealkylation) of asphaltenes. It turns out that such a chemical modification drastically changes the situation: the modified asphaltenes form extended columnar aggregates which can serve as thermal conduction paths, considerably enhancing the thermal conductivity of a liquid composite sample. This effect, however, vanishes upon cooling because the columnar extended stacks of chemically modified asphaltenes transform into the helical twisted structures, which reduces the overlap of adjacent asphaltenes in aggregates. Importantly, all the simulations have been carried out with two different all-atom force fields. We have demonstrated that both computational models give qualitatively similar results. Overall, our findings clearly show that chemically modified asphaltene molecules can be considered as promising carbon-based thermal conductivity enhancers for liquid paraffin; this result can be used for optimizing the paraffin-based thermal energy storage systems
    corecore