3 research outputs found

    DIBc, a nanochelating-based nano metal-organic framework, shows anti-diabetic effects in high-fat diet and streptozotocin-induced diabetic rats

    No full text
    Saideh Fakharzadeh,1–3 Somayeh Kalanaky,2 Maryam Hafizi,2 Mohammad Hassan Nazaran,2 Homeira Zardooz1,3 1Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; 2Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran; 3Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran Aims: Despite daily increase in diabetic patients in the world, currently approved medications for this disease, at best, only reduce its progression speed. Using novel technologies is a solution for synthetizing more efficient medicines. In the present study, we evaluated anti-diabetic effects of DIBc, a nano metal–organic framework, which is synthetized based on nanochelating technology.Methods: High-fat diet and streptozotocin-induced diabetic rats were treated by DIBc or metformin for 6 weeks.Results: DIBc decreased plasma glucose, triglyceride, cholesterol, high-density lipoprotein, and low-density lipoprotein compared with diabetic and metformin groups. In DIBc-treated rats, significant homeostasis model assessment of insulin resistance index, malondialdehyde, and tumor necrosis factor-α decrease was observed. H&E staining showed increased islet number and area in DIBc-treated rats compared with diabetic controls.Conclusion: The results showed anti-diabetic effects of nanochelating-based framework. So DIBc, as a nano structure, has the capacity to be evaluated in future studies as a novel anti-diabetic agent. Keywords: DIBc, nanochelating technology, metal organic framework, diabetes, streptozotocin, high-fat diet &nbsp

    The therapeutic effects of MSc1 nanocomplex, synthesized by nanochelating technology, on experimental autoimmune encephalomyelitic C57/BL6 mice

    No full text
    Saideh Fakharzadeh,1 Mohammad Ali Sahraian,2 Maryam Hafizi,1 Somayeh Kalanaky,1 Zahra Masoumi,1 Mehdi Mahdavi,1 Nasser Kamalian,3 Alireza Minagar,4 Mohammad Hassan Nazaran1 1Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran; 2MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; 3Department of Pathology, Medical School of Tehran University of Medical Sciences, Tehran, Iran; 4Department of Neurology, LSU Health Sciences Centre, Shreveport, LA, USA Purpose: Currently approved therapies for multiple sclerosis (MS) at best only slow down its progression. Therefore, it is necessary to utilize novel technologies in order to synthesize smart multifunctional structures. In the present study, for the first time we evaluated the therapeutic potential of MSc1 nanocomplex, which was designed based on novel nanochelating technology. Materials and methods: MSc1 cell-protection capacity, with and without iron bond, was evaluated against hydrogen peroxide (H2O2)-induced oxidative stress in cultured rat pheochromocytoma-12 cells. The ability of MSc1 to maintain iron bond at pH ranges of 1–7 was evaluated. Nanocomplex toxicity was examined by estimating the intraperitoneal median lethal dose (LD50). Experimental autoimmune encephalomyelitic mice were injected with MSc1 14 days after disease induction, when the clinical symptoms appeared. The clinical score, body weight, and disease-induced mortality were monitored until day 54. In the end, after collecting blood samples for assessing hemoglobin and red blood cell count, the brains and livers of the mice were isolated for hematoxylin and eosin staining and analysis of iron content, respectively. Results: The results showed that MSc1 prevented H2O2-induced cell death even after binding with iron, and it preserved its bond with iron constant at pH ranges 1–7. The nanocomplex intraperitoneal LD50 was 1,776.59 mg/kg. MSc1 prompted therapeutic behavior and improved the disabling features of experimental autoimmune encephalomyelitis, which was confirmed by decreased clinical scores versus increased body mass and 100% survival probability. It did not cause any adverse effects on hemoglobin or red blood cell count. Histopathological studies showed no neural loss or lymphocyte infiltration in MSc1-treated mice, while the hepatic iron content was also normal. Conclusion: These results demonstrate that MSc1 could be a promising beneficial novel agent and has the capacity to be evaluated in further studies. Keywords: EAE, multiple sclerosis, MSc1, nanochelating technology, nanocomple

    BCc1, the novel antineoplastic nanocomplex, showed potent anticancer effects in vitro and in vivo

    No full text
    Somayeh Kalanaky,1,2 Maryam Hafizi,1–3 Saideh Fakharzadeh,1 Mohammad Vasei,4 Ladan Langroudi,5 Ehsan Janzamin,6 Seyed Mahmoud Hashemi,7 Maryam Khayamzadeh,2 Masoud Soleimani,6 Mohammad Esmaeil Akbari,2 Mohammad Hassan Nazaran1 1Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran; 2Cancer Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran; 3Stem Cell Technology Research Center, Tehran, Iran; 4Department of Pathology, Tehran University of Medical Sciences, Tehran, Iran; 5Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; 6Department of Haematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; 7Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran Purpose: In spite of all the efforts and researches on anticancer therapeutics, an absolute treatment is still a myth. Therefore, it is necessary to utilize novel technologies in order to synthesize smart multifunctional structures. In this study, for the first time, we have evaluated the anticancer effects of BCc1 nanocomplex by vitro and in vivo studies, which is designed based on the novel nanochelating technology.Methods: Human breast adenocarcinoma cell line (MCF-7) and mouse embryonic fibroblasts were used for the in vitro study. Antioxidant potential, cell toxicity, apoptosis induction, and CD44 and CD24 protein expression were evaluated after treatment of cells with different concentrations of BCc1 nanocomplex. For the in vivo study, mammary tumor-bearing female Balb/c mice were treated with different doses of BCc1 and their effects on tumor growth rate and survival were evaluated.Results: BCc1 decreased CD44 protein expression and increased CD24 protein expression. It induced MCF-7 cell apoptosis but at the same concentrations did not have negative effects on mouse embryonic fibroblasts viability and protected them against oxidative stress. Treatment with nanocomplex increased survival and reduced the tumor size growth in breast cancer-bearing balb/c mice.Conclusion: These results demonstrate that BCc1 has the capacity to be assessed as a new anticancer agent in complementary studies. Keywords: BCc1, cancer, nanotechnology, nanochelating technology, nanocomple
    corecore