14 research outputs found

    On the accretion luminosity of isolated neutron stars

    Get PDF
    The accretion process onto a magnetized isolated neutron star, which captures material from the interstellar medium, is discussed. The evolutionary track of such a star can be presented as a sequence of four states: ejector, supersonic propeller, subsonic propeller, and steady accretor. I show that subsonic propeller - accretor transition does not occur as long as the magnetic field of the star is strong enough to control the accretion flow in the stellar vicinity. During the subsonic propeller state the accretion rate onto the stellar surface is limited to the rate of plasma diffusion into its magnetosphere. The diffusion rate is at least three orders of magnitude smaller than the maximum possible mass capture rate by the star. Therefore, the expected accretion luminosity of magnetized isolated neutron stars is at least three orders of magnitude smaller than that previously evaluated.Comment: 4 pages, accepted for publication in A&

    Can the rapid braking of the white dwarf in AE Aquarii be explained in terms of the gravitational wave emitter mechanism?

    Get PDF
    The spin-down power of the white dwarf in the close binary AE Aquarii significantly exceeds the bolometric luminosity of the system. The interpretation of this phenomenon in terms of the gravitational-wave emitter mechanism has been recently suggested by Choi & Yi. The basic assumption of their interpretation is that the spatially limited blobs or mounds of the mass \delta m ~ 10^{-3} M_sun, are present at the magnetic poles of the white dwarf. We show that the mounds of this mass can be confined by the magnetic field of the white dwarf only if the dipole magnetic moment of the star exceeds 4x10^{37} G cm^3. Under these conditions, however, the magnetodipole losses of the white dwarf would exceed the evaluated spin-down power 6 orders of magnitude. On this basis we discard a possibility that the observed rapid braking of the white dwarf in AE Aquarii can be explained in terms of the mechanism proposed by Choi & Yi.Comment: 6 pages, published in ApJ, 576, L5

    On a Site of X-ray Emission in AE Aquarii

    Full text link
    An analysis of recently reported results of XMM-Newton observations of AE Aqr within a hypothesis that the detected X-ray source is located inside the Roche lobe of the white dwarf is presented. I show this hypothesis to be inconsistent with the currently adopted model of mass-transfer in the system. Possible solutions of this problem are briefly discussed.Comment: 4 pages, accepted for publication in ApJ Letter

    Spin-Down of the Long-Period Accreting Pulsar 4U 2206+54

    Full text link
    4U 2206+54 is a high mass X-ray binary which has been suspected to contain a neutron star accreting from the wind of its companion BD +53 2790. Reig et al. have recently detected 5560 s period pulsations in both RXTE and INTEGRAL observations which they conclude are due to the spin of the neutron star. We present observations made with Suzaku which are contemporaneous with their RXTE observation of this source. We find strong pulsations at a period of 5554 +/- 9 s in agreement with their results. We also present a reanalysis of BeppoSAX observations of 4U 2206+54 made in 1998, in which we find strong pulsations at a period of 5420 +/- 28 seconds, revealing a spin-down trend in this long-period accreting pulsar. Analysis of these data suggests that the neutron star in this system is an accretion-powered magnetar.Comment: Submitted to The Astrophysical Journa
    corecore