3,171 research outputs found
Reconnection in Marginally Collisionless Accretion Disk Coronae
We point out that a conventional construction placed upon observations of
accreting black holes, in which their nonthermal X-ray spectra are produced by
inverse comptonization in a coronal plasma, suggests that the plasma is
marginally collisionless. Recent developments in plasma physics indicate that
fast reconnection takes place only in collisionless plasmas. As has recently
been suggested for the Sun's corona, such marginal states may result from a
combination of energy balance and the requirements of fast magnetic
reconnection.Comment: Revised in response to referee. Accepted ApJ. 11 pp., no figures.
Uses aastex 5.0
The Origin of Soft X-rays in DQ Herculis
DQ Herculis (Nova Herculis 1934) is a deeply eclipsing cataclysmic variable
containing a magnetic white dwarf primary. The accretion disk is thought to
block our line of sight to the white dwarf at all orbital phases due to its
extreme inclination angle. Nevertheless, soft X-rays were detected from DQ Her
with ROSAT PSPC. To probe the origin of these soft X-rays, we have performed
Chandra ACIS observations. We confirm that DQ Her is an X-ray source. The bulk
of the X-rays are from a point-like source and exhibit a shallow partial
eclipse. We interpret this as due to scattering of the unseen central X-ray
source, probably in an accretion disk wind. At the same time, we observe what
appear to be weak extended X-ray features around DQ Her, which we interpret as
an X-ray emitting knot in the nova shell.Comment: 18 pages including 4 figures, accepted for publication in
Astrphyisical Journa
Infrared Candidates for the Intense Galactic X-ray Source GX 17+2
We present new astrometric solutions and infrared Hubble Space Telescope
observations of GX 17+2 (X1813-140), one of the brightest X-ray sources on the
celestial sphere. Despite 30 years of intensive study, and the existence of a
strong radio counterpart with a sub-arcsecond position, the object remains
optically unidentified. The observed X-ray characteristics strongly suggest
that it is a so-called "Z-source," the rare but important category that
includes Sco X-1 and Cyg X-2. Use of the USNO-A2.0 catalog enables us to
measure the position of optical and infrared objects near the radio source to
sub-arcsecond precision within the International Celestial Reference Frame, for
direct comparison with the radio position, which we also recompute using modern
calibrators. With high confidence we eliminate the V~17.5 star NP Ser, often
listed as the probable optical counterpart of the X-ray source, as a candidate.
Our HST NICMOS observations show two faint objects within our 0.5" radius 90%
confidence error circle. Even the brighter of the two, Star A, is far fainter
than expected (H~19.8), given multiple estimates of the extinction in this
field and our previous understanding of Z sources, but it becomes the best
candidate for the counterpart of GX 17+2. The probability of a chance
coincidence of an unrelated faint object on the radio position is high.
However, if the true counterpart is not Star A, it is fainter still, and our
conclusion that the optical counterpart is surprisingly underluminous is but
strengthened.Comment: 15 pages including 3 figures and 3 tables. Accepted for publication
in The Astrophysical Journa
Another Faint UV Object Associated with a Globular Cluster X-Ray Source: The Case of M92
The core of the metal poor Galactic Globular Cluster M92 (NGC 6341) has been
observed with WFPC2 on the Hubble Space Telescope through visual, blue and
mid-UV filters in a program devoted to study the evolved stellar population in
a selected sample of Galactic Globular Clusters. In the UV color magnitude diagram we have discovered a faint `UV-dominant'
object. This star lies within the error box of a Low Luminosity Globular
Cluster X-ray source (LLGCX) recently found in the core of M92. The properties
of the UV star discovered in M92 are very similar to those of other UV stars
found in the core of some clusters (M13, 47 Tuc, M80, etc)---all of them are
brighter in the UV than in the visible and are located in the vicinity of a
LLGCX. We suggest that these stars are a new sub-class of cataclysmic
variables.Comment: 21 pages, 4 figures. Astrophysical journal in pres
Diagrams for heat kernel expansions
A diagramatic heat kernel expansion technique is presented. The method is
especially well suited to the small-derivative expansion of the heat kernel,
but it can also be used to reproduce the results obtained by the approach known
as covariant perturbation theory. The new technique gives an expansion for the
heat kernel at coincident points. It can also be used to obtain the derivative
of the heat kernel and this is useful for evaluating the expectation values of
the stress-energy tensor.Comment: 17 pages, 4 figures, ReVTe
Ultraviolet Emission Line Ratios of Cataclysmic Variables
We present a statistical analysis of the ultraviolet emission lines of
cataclysmic variables (CVs) based on ultraviolet spectra of 20
sources extracted from the International Ultraviolet Explorer Uniform Low
Dispersion Archive. These spectra are used to measure the emission line fluxes
of N V, Si IV, C IV, and He II and to construct diagnostic flux ratio diagrams.
We investigate the flux ratio parameter space populated by individual CVs and
by various CV subclasses (e.g., AM Her stars, DQ Her stars, dwarf novae,
nova-like variables). For most systems, these ratios are clustered within a
range of decade for log Si IV/C IV and log He II/C IV
and decades for log N V/C IV . These
ratios are compared to photoionization and collisional ionization models to
constrain the excitation mechanism and the physical conditions of the
line-emitting gas. We find that the collisional models do the poorest job of
reproducing the data. The photoionization models reproduce the Si IV/C IV line
ratios for some shapes of the ionizing spectrum, but the predicted N V/C IV
line ratios are simultaneously too low by typically decades. Worse,
for no parameters are any of the models able to reproduce the observed He II/C
IV line ratios; this ratio is far too small in the collisional and scattering
models and too large by typically decades in the photoionization
models.Comment: LaTeX format, uses aaspp4.sty, 28 pages, 11 Postscript figures,
accepted for publication in The Astrophysical Journal 10/16/9
A hazard model of the probability of medical school dropout in the United Kingdom
From individual level longitudinal data for two entire cohorts of medical students in UK universities, we use multilevel models to analyse the probability that an individual student will drop out of medical school. We find that academic preparednessâboth in terms of previous subjects studied and levels of attainment thereinâis the major influence on withdrawal by medical students. Additionally, males and more mature students are more likely to withdraw than females or younger students respectively. We find evidence that the factors influencing the decision to transfer course differ from those affecting the decision to drop out for other reasons
Resonance line-profile calculations based on hydrodynamical models of cataclysmic variable winds
We present synthetic line profiles as predicted by the models of 2-D line-
driven disk winds due to Proga, Stone & Drew. We compare the model line
profiles with HST observations of the cataclysmic variable IX Vel. The model
wind consists of a slow outflow that is bounded on the polar side by a fast
stream. We find that these two components of the wind produce distinct spectral
features. The fast stream produces profiles which show features consistent with
observations. These include the appearance of the P-Cygni shape for a range of
inclinations, the location of the maximum depth of the absorption component at
velocities less than the terminal velocity, and the transition from absorption
to emission with increasing inclination. However the model profiles have too
little absorption or emission equivalent width. This quantitative difference
between our models and observations is not a surprise because the line-driven
wind models predict a mass loss rate that is lower than the rate required by
the observations. We note that the model profiles exhibit a double-humped
structure near the line center which is not echoed in observations. We identify
this structure with a non-negligible redshifted absorption which is formed in
the slow component of the wind where the rotational velocity dominates over
expansion velocity. We conclude that the next generation of disk wind models,
developed for application to CVs, needs to yield stronger wind driving out to
larger disk radii than do the present models.Comment: LaTeX, 19 pages, to appear in Ap
- âŠ