12 research outputs found
Recommended from our members
Persistent generalized Grover disease: complete remission after treatment with oral acitretin
Grover disease (GD) is a disorder of unknown origin, clinically characterized by the occurrence of pruritic, erythematous or brownish papules and papulovesicles, which histologically reveal four different patterns of acantholysis. Usually, the eruption is self-limited and spontaneously remit within a few weeks. In some cases, however, it may persist for months or even years and show a therapy-resistant course. We report a 56-year-old woman with recalcitrant, persistent, and generalized GD who showed complete remission after 6 weeks of treatment with oral acitretin (0.8mg/kg/day). The treatment was well-tolerated and laboratory parameters remained unchanged. The patient remains free of any recurrence at 26 months. To the best of our knowledge, this is the first report of a complete remission of the persistent form of GD as a result of oral acitretin monotherapy
Functional Models for Congenital Anomalies of the Kidney and Urinary Tract
Congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most common developmental diseases in humans; however, the cause for most patients remains unknown. Efforts to identify novel genetic causes for CAKUT through next-generation sequencing techniques have led to the discovery of new genes and risk factors. Concomitantly, these same efforts have generated large gene candidate lists requiring individual functional characterization. Appropriate model systems are needed to assess the functionality of genes and pathogenicity of genetic variants discovered in CAKUT patients. In this review, we discuss how cellular, animal, and personal (human) models are being used to study CAKUT candidate genes and what their major advantages and disadvantages are with respect to relevance and throughput. (C) 2014 S. Karger AG, Base
Unravelling the genetic causes of multiple malformation syndromes: A whole exome sequencing study of the Cypriot population
International audienceMultiple malformation syndromes (MMS) belong to a group of genetic disorders characterised by neurodevelopmental anomalies and congenital malformations. Here we explore for the first time the genetic aetiology of MMS using whole-exome sequencing (WES) in undiagnosed patients from the Greek-Cypriot population after prior extensive diagnostics workup including karyotype and array-CGH. A total of 100 individuals (37 affected), from 32 families were recruited and family-based WES was applied to detect causative single-nucleotide variants (SNVs) and indels. A genetic diagnosis was reported for 16 MMS patients (43.2%), with 10/17 (58.8%) of the findings being novel. All autosomal dominant findings occurred de novo . Functional studies were also performed to elucidate the molecular mechanism relevant to the abnormal phenotypes, in cases where the clinical significance of the findings was unclear. The 17 variants identified in our cohort were located in 14 genes ( PCNT , UBE3A , KAT6A , SPR , POMGNT1 , PIEZO2 , PXDN , KDM6A , PHIP , HECW2 , TFAP2A , CNOT3 , AGTPBP1 and GAMT ). This study has highlighted the efficacy of WES through the high detection rate (43.2%) achieved for a challenging category of undiagnosed patients with MMS compared to other conventional diagnostic testing methods (10–20% for array-CGH and ~3% for G-banding karyotype analysis). As a result, family-based WES could potentially be considered as a first-tier cost effective diagnostic test for patients with MMS that facilitates better patient management, prognosis and offer accurate recurrence risks to the families
Gain of glycosylation in integrin alpha3 causes lung disease and nephrotic syndrome
Contains fulltext :
107969.pdf (publisher's version ) (Open Access)Integrins are transmembrane alphabeta glycoproteins that connect the extracellular matrix to the cytoskeleton. The laminin-binding integrin alpha3beta1 is expressed at high levels in lung epithelium and in kidney podocytes. In podocytes, alpha3beta1 associates with the tetraspanin CD151 to maintain a functional filtration barrier. Here, we report on a patient homozygous for a novel missense mutation in the human ITGA3 gene, causing fatal interstitial lung disease and congenital nephrotic syndrome. The mutation caused an alanine-to-serine substitution in the integrin alpha3 subunit, thereby introducing an N-glycosylation motif at amino acid position 349. We expressed this mutant form of ITGA3 in murine podocytes and found that hyperglycosylation of the alpha3 precursor prevented its heterodimerization with beta1, whereas CD151 association with the alpha3 subunit occurred normally. Consequently, the beta1 precursor accumulated in the ER, and the mutant alpha3 precursor was degraded by the ubiquitin-proteasome system. Thus, these findings uncover a gain-of-glycosylation mutation in ITGA3 that prevents the biosynthesis of functional alpha3beta1, causing a fatal multiorgan disorder
De novo 14q24.2q24.3 microdeletion including IFT43 is associated with intellectual disability, skeletal anomalies, cardiac anomalies, and myopia
We report an 11-year-old girl with mild intellectual disability, skeletal anomalies, congenital heart defect, myopia, and facial dysmorphisms including an extra incisor, cup-shaped ears, and a preauricular skin tag. Array comparative genomic hybridization analysis identified a de novo 4.5-Mb microdeletion on chromosome 14q24.2q24.3. The deleted region and phenotype partially overlap with previously reported patients. Here, we provide an overview of the literature on 14q24 microdeletions and further delineate the associated phenotype. We performed exome sequencing to examine other causes for the phenotype and queried genes present in the 14q24.2q24.3 microdeletion that are associated with recessive disease for variants in the non-deleted allele. The deleted region contains 65 protein-coding genes, including the ciliary gene IFT43. Although Sanger and exome sequencing did not identify variants in the second IFT43 allele or in other IFT complex A-protein-encoding genes, immunocytochemistry showed increased accumulation of IFT-B proteins at the ciliary tip in patient-derived fibroblasts compared to control cells, demonstrating defective retrograde ciliary transport. This could suggest a ciliary defect in the pathogenesis of this disorder. © 2016 Wiley Periodicals, Inc
Analysis of genome-wide association studies of Alzheimer disease and of Parkinson disease to determine if these 2 diseases share a common genetic risk
Despite Alzheimer disease (AD) and Parkinson disease (PD) being clinically distinct entities, there is a possibility of a pathological overlap, with some genome-wide association (GWA) studies suggesting that the 2 diseases represent a biological continuum. The application of GWA studies to idiopathic forms of AD and PD have identified a number of loci that contain genetic variants that increase the risk of these disorders. To assess the genetic overlap between PD and AD by testing for the presence of potentially pleiotropic loci in 2 recent GWA studies of PD and AD. Combined GWA analysis. Data sets from the United Kingdom, Germany, France, and the United States. Thousands of patients with AD or PD and their controls. Meta-analysis of GWA studies of AD and PD. To identify evidence for potentially pleiotropic alleles that increased the risk for both PD and AD, we performed a combined PD-AD meta-analysis and compared the results with those obtained in the primary GWA studies.We also tested for a net effect of potentially polygenic alleles that were shared by both disorders by performing a polygenic score analysis. Finally, we also performed a gene-based association analysis that was aimed at detecting genes that harbor multiple disease-causing single-nucleotide polymorphisms, some of which confer a risk of PD and some a risk of AD. Detailed interrogation of the single-nucleotide polymorphism, polygenic, and gene-based analyses resulted in no significant evidence that supported the presence of loci that increase the risk of both PD and AD. Our findings therefore imply that loci that increase the risk of both PD and AD are not widespread and that the pathological overlap could instead be “downstream” of the primary susceptibility genes that increase the risk of each diseas
Prioritization and burden analysis of rare variants in 208 candidate genes suggest they do not play a major role in CAKUT
The leading cause of end-stage renal disease in children is attributed to congenital anomalies of the kidney and urinary tract (CAKUT). Familial clustering and mouse models support the presence of monogenic causes. Genetic testing is insufficient as it mainly focuses on HNF1B and PAX2 mutations that are thought to explain CAKUT in 5-15% of patients. To identify novel, potentially pathogenic variants in additional genes, we designed a panel of genes identified from studies on familial forms of isolated or syndromic CAKUT and genes suggested by in vitro and in vivo CAKUT models. The coding exons of 208 genes were analyzed in 453 patients with CAKUT using next-generation sequencing. Rare truncating, splice-site variants, and non-synonymous variants, predicted to be deleterious and conserved, were prioritized as the most promising variants to have an effect on CAKUT. Previously reported disease-causing mutations were detected, but only five were fully penetrant causal mutations that improved diagnosis. We prioritized 148 candidate variants in 151 patients, found in 82 genes, for follow-up studies. Using a burden test, no significant excess of rare variants in any of the genes in our cohort compared with controls was found. Thus, in a study representing the largest set of genes analyzed in CAKUT patients to date, the contribution of previously implicated genes to CAKUT risk was significantly smaller than expected, and the disease may be more complex than previously assumed.Kidney International advance online publication, 21 October 2015; doi:10.1038/ki.2015.319
The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions.
Item does not contain fulltextThere is increasing evidence that frontotemporal dementia and amyotrophic lateral sclerosis are part of a disease continuum. Recently, a hexanucleotide repeat expansion in C9orf72 was identified as a major cause of both sporadic and familial frontotemporal dementia and amyotrophic lateral sclerosis. The aim of this study was to investigate clinical and neuropathological characteristics of hexanucleotide repeat expansions in C9orf72 in a large cohort of Dutch patients with frontotemporal dementia. Repeat expansions were successfully determined in a cohort of 353 patients with sporadic or familial frontotemporal dementia with or without amyotrophic lateral sclerosis, and 522 neurologically normal controls. Immunohistochemistry was performed in a series of 10 brains from patients carrying expanded repeats using a panel of antibodies. In addition, the presence of RNA containing GGGGCC repeats in paraffin-embedded sections of post-mortem brain tissue was investigated using fluorescence in situ hybridization with a locked nucleic acid probe targeting the GGGGCC repeat. Hexanucleotide repeat expansions in C9orf72 were found in 37 patients with familial (28.7%) and five with sporadic frontotemporal dementia (2.2%). The mean age at onset was 56.9 +/- 8.3 years (range 39-76), and disease duration 7.6 +/- 4.6 years (range 1-22). The clinical phenotype of these patients varied between the behavioural variant of frontotemporal dementia (n = 34) and primary progressive aphasia (n = 8), with concomitant amyotrophic lateral sclerosis in seven patients. Predominant temporal atrophy on neuroimaging was present in 13 of 32 patients. Pathological examination of the 10 brains from patients carrying expanded repeats revealed frontotemporal lobar degeneration with neuronal transactive response DNA binding protein-positive inclusions of variable type, size and morphology in all brains. Fluorescence in situ hybridization analysis of brain material from patients with the repeat expansion, a microtubule-associated protein tau or a progranulin mutation, and controls did not show RNA-positive inclusions specific for brains with the GGGGCC repeat expansion. The hexanucleotide repeat expansion in C9orf72 is an important cause of frontotemporal dementia with and without amyotrophic lateral sclerosis, and is sometimes associated with primary progressive aphasia. Neuropathological hallmarks include neuronal and glial inclusions, and dystrophic neurites containing transactive response DNA binding protein. Future studies are needed to explain the wide variation in clinical presentation.01 maart 201
Genetic, environmental, and epigenetic factors involved in CAKUT
Congenital anomalies of the kidney and urinary tract (CAKUT) refer to a spectrum of structural renal malformations and are the leading cause of end-stage renal disease in children. The genetic diagnosis of CAKUT has proven to be challenging due to genetic and phenotypic heterogeneity and incomplete genetic penetrance. Monogenic causes of CAKUT have been identified using different approaches, including single gene screening, and gene panel and whole exome sequencing. The majority of the identified mutations, however, lack substantial evidence to support a pathogenic role in CAKUT. Copy number variants or single nucleotide variants that are associated with CAKUT have also been identified. Numerous studies support the influence of epigenetic and environmental factors on kidney development and the natural history of CAKUT, suggesting that the pathogenesis of this syndrome is multifactorial. In this Review we describe the current knowledge regarding the genetic susceptibility underlying CAKUT and the approaches used to investigate the genetic basis of CAKUT. We outline the associated environmental risk factors and epigenetic influences on CAKUT and discuss the challenges and strategies used to fully address the involvement and interplay of these factors in the pathogenesis of the disease