6 research outputs found

    Quantitative estimation of protein in sprouts of 'vigna radiate' (mung beans), 'lens culinaris' (lentils), and 'cicer arietinum' (chickpeas) by Kjeldahl and Lowry methods

    Get PDF
    Protein scarcity is the most vital cause of long-lasting diseases and even untimely deaths in some developing nations. The application of protein in food is advantageous from the point of view of non-toxicity, biocompatibility, and dietary benefits. This study aimed to determine the protein contents of the sprouts of Vigna radiates (mung beans), Lens culinaris (lentils), and Cicer arietinum (chickpeas) using the Kjeldahl and Lowry methods. The results obtained from the Kjeldahl method identified protein concentrations of 2.54, 2.63, and 2.19%, whereas the Lowry method results identified protein concentrations of 2.96%, 4.10%, and 1.6% in mung beans, lentils, and chickpeas, respectively. In both the methods, lentils were found to have the highest amount of protein followed by mung beans and chickpeas. Both the Kjeldahl and Lowry methods demonstrated good protein values and low variation in the protein amount in the analyzed samples. Furthermore, the methods had greater sensitivity and comparable experimental variability. The outcomes revealed that assays can be applied for protein analysis in legumes. In the context of a lack of suitable standard procedures for evaluating legumes’ compositions, the present study is suitable for food control laboratories. In addition, the studied samples represent a significant source of protein and can be used to fulfil the daily requirements for protein intake and other food applications

    Novel Stimuli-Responsive Pectin-PVP-Functionalized Clay Based Smart Hydrogels for Drug Delivery and Controlled Release Application

    Get PDF
    Stimuli-responsive drug delivery systems are urgently required for injectable site-specific delivery and release of drugs in a controlled manner. For this purpose, we developed novel pH-sensitive, biodegradable, and antimicrobial hydrogels from bio-macromolecule pectin, polyvinylpyrrolidone (PVP), 3-aminopropyl (diethoxy)methyl silane (3-APDEMS), and sepiolite clay via blending and solution casting technique. The purified sepiolite (40 um) was functionalized with 3-APDEMS crosslinker (ex-situ modification) followed by hydrogels fabrication. FTIR and SEM confirmed crosslinked structural integrity and rod-like morphology of hydrogels respectively. The swelling properties of hydrogels could be controlled by varying the concentration of modified clay in pectin/PVP blends. Moreover, the decrease in pH increased the swelling of hydrogels indicating the pH-responsiveness of hydrogels. All hydrogels were degraded after 21 days in phosphate buffer saline pH 7.4 (human blood pH). In-vitro cytotoxicity against 3T3 mouse fibroblast cell line analysis confirmed cytocompatibility of all hydrogels. Ceftriaxone sodium (CTX-S) was selected as a model drug. The release profile of the hydrogel showed 91.82% release in PBS for 2 h in a consistent and controlled manner. The chemical structure of the drug remained intact during and after release confirmed through UV-Visible spectroscopy. Overall, these hydrogels could be used as potential scaffolds for future biomedical applications
    corecore