40 research outputs found
Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans
Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have
fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in
25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16
regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of
correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP,
while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in
Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium
(LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region.
Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant
enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the
refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa,
an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of
PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent
signals within the same regio
Membrane-type 1 matrix metalloproteinase expression is regulated by zonula occludens-1 in human breast cancer cells
The acquisition of a migratory/invasive phenotype by tumor cells is characterized by the loss of cell-cell adhesion contacts and the expression of degradative properties. In this study, we examined the effect of the disorganization of occludin/zomda occludens (ZO)-1 tight junction (TJ) complexes on the expression of membrane-type I matrix metalloproteinase (MT1-MMP). We first compared the expression of MT1-MMP and the localization of occludin/ZO-1 complexes in breast tumor cell lines displaying various degrees of invasiveness. We showed that the expression of MT1-MMP in invasive breast tumor cell lines correlates with the absence of occludin and with a cytoplasmic localization of ZO-1. In contrast, noninvasive cell lines displayed a membrane staining for both ZO-1 and occludin and did not express MT1-MMP. In vivo, cytoplasmic ZO-1 and MTI-MMP could be detected in invasive tumor clusters of human breast carcinomas. We then used RNA interference strategy to inhibit ZO-1 expression in invasive BT549 cells and to evaluate the effect of ZO-1 downregulation on MTI-MMP expression. We observed that ZO-1 small interfering RNA transfection down-regulates MT1-MMP mRNAs and proteins and subsequently decreases the ability of tumor cells to invade a reconstituted basement membrane in a Boyden chamber assay. Inversely, transfection of expression vectors encoding wild-type ZO-1 or the NH2-terminal fragment of ZO-1 comprising the PSD95/DLG/ZO-1 domains in BT549 activated a human MT1-MMP promoter luciferase reporter construct and increased cell invasiveness. Such transfections concomitantly activated the beta-catenin/TCF/LEF pathway. Our results therefore show that ZO-1, besides its structural role in TJ assembly, can intervene in signaling events promoting tumor cell invasion
Regulation of membrane-type 1 matrix metalloproteinase expression by zonula occludens-2 in human lung cancer cells.
During tumor invasion, tumor epithelial cells acquire migratory and invasive properties involving important phenotypic alterations. Among these changes, one can observe reorganization or a loss of cell-cell adhesion complexes such as tight junctions (TJs). TJs are composed of transmembrane proteins (occludin, claudins) linked to the actin cytoskeleton through cytoplasmic adaptor molecules including those of the zonula occludens family (ZO-1, -2, -3). We here evaluated the potential role of ZO-2 in the acquisition of invasive properties by tumor cells. In vivo, we showed a decrease of ZO-2 expression in bronchopulmonary cancers, with a preferential localization in the cytoplasm. In addition, in vitro, the localization of ZO-2 varied according to invasive properties of tumor cells, with a cytoplasmic localization correlating with invasion. In addition, we demonstrated that ZO-2 inhibition increases invasive and migrative capacities of invasive tumor cells. This was associated with an increase of MT1-MMP. These results suggest that ZO-2, besides its structural role in tight junction assembly, can act also as a repressor of tumor progression through its ability to reduce the expression of tumor-promoting genes in invasive tumor cells