9 research outputs found

    PRODUCTION AND PURIFICATION OF ANGIOTENSIN-CONVERTING ENZYME INHIBITOR BY SELECTED BACTERIAL STRAIN FOR CANCER THERAPY

    Get PDF
    Objective: The present study was planned to explore safer, innovative and economic Angiotensin-converting enzyme inhibitors (ACEi) from beef extract by the action of a proteolytic Micrococcus luteus. Cytotoxicity of the stable peptide was predicted using MCF-7 cell line in vitro.Methods: ACEi was purified by sequential steps of ethanol precipitation, ion exchange column chromatography (MonoQ) and gel filtration column chromatography (Sephadex G25). The apparent molecular mass was determined by SDS-PAGE. The anticancer property was analyzed by studying the cytotoxicity effects of angiotensin converting enzyme inhibitor using Breast cancer MCF-7 cell linesResults: The peptide was purified and molecular mass was determined as 4.5 kDa. The IC50 value of peptide was found to be 59.5 µg/ml. The DNA fragmentation was not observed in the treated cells. The purified peptide has demonstrated to induce apoptosis of cancer cell. The results proved that the peptide has the ability to be used for cancer therapy.Conclusion: The presence of ACE inhibition activities in the fermentation of beef extract using Micrococcus luteus has been investigated. The Peptide has been determined as an active compound that inhibited the activity of ACE. These properties indicate the possibilities of the use of purified protein as a potent anticancer agent.Keywords: Angiotensin-converting enzyme inhibitors, Micrococcus luteus, Anti-proliferative, Anti-metastatic, MCF-7 cell line, Anticancer activity

    SCREENING AND PRODUCTION OF ANTICARCINOGENIC ENZYME FROM ESCHERICHIA COLI CTLS20: L - ASPARAGINASE

    Get PDF
    Objective: The objective of this study was attempted to screen the production of L-asparaginase from bacteria isolated from soil samples and its enzymatic activity.Methods: Screening of L-asparaginase was performed using phenol red indicator growth medium from which the positive strains were chosen based on the colour change. The enzyme production of L-asparaginase was established by submerged fermentation followed by the molecular detection of the efficient bacterial strains.Results: The enzyme production was undertaken by submerged fermentation with the evaluation of enzymatic activity and protein content. This revealed that the strain Escherichia coli CTLS20 produced a higher yield of L-asparaginase (30.22 IU/mg), 16.91 µg/ml of protein with the specific activity of 1.787 IU/mg when compared with other bacterial strains. The efficient bacterial strains were also confirmed by 16S rRNA sequence as Escherichia coli, Acinetobacter baumnnii, Klebsiella pneumoniae and the phylogenetic tree construction revealed the evolutionary relationship of the bacterial strains.Conclusion: This study indicated that the bacterial strain E. coli CTLS20 had the ability for the higher production of L-asparaginase. This novel higher yielding bacterial asparaginase is highly desirable as better alternatives in cancer therapy.Keywords: Soil, L-asparaginase, Submerged fermentation, E. coli, Phylogenetic tre

    ISOLATION OF ANGIOTENSIN-CONVERTING ENZYME INHIBITOR PRODUCING BACTERIA FROM COW MILK

    Get PDF
    Objective: To evaluate the potential of protease producing organism for the production of Angiotensin I–converting enzyme (ACE) inhibitor by fermentation of various protein substrates.Methods: Bacterial strains were isolated from cow milk collected in Coimbatore, Tamil Nadu, India by using serial dilution technique, plated on nutrient agar medium. The identity of the strain was ascertained by 16s rRNA gene sequencing method and was submitted to the NCBI GenBank nucleotide database. Various substrates were screened for ACE inhibitor production by the fermentation with the isolated strain.Results: The isolated coded as BUCTL09, which showed a significant zone of clearance was selected and identified as Micrococcus luteus (KF303592.1). Among the seven substrates, only beef extract fermented broth showed an inhibition of 79% and was reported as the best substrate.Conclusion: In the search for non-toxic, and economic ACE inhibitors as an alternative to the synthetic drugs, many natural ACE inhibitors have been isolated from a microbial source. In the present study, isolate BUCTL09 was selected for the production of ACE inhibitor from the beef extract. Findings from this study lead us to investigate this potent ACE inhibitor further for its biological properties and to explore the impending efficacy of the ACE inhibitor which may conceivably be developed into a prospective drug

    Effects of pre-operative isolation on postoperative pulmonary complications after elective surgery: an international prospective cohort study

    No full text
    corecore