639 research outputs found

    Fast Vacuum Decay into Quark Pairs in Strong Color Electric and Magnetic Fields

    Full text link
    We study quark-pair creations in strong color electromagnetic fields. We point out that, for massless quarks, the vacuum persistency probability per unit space-time volume is zero, i.e., the quark-pair creation rate w is infinite, in general homogeneous color electromagnetic fields, while it is finite when the color magnetic field is absent. We find that the contribution from the lowest Landau level (LLL) dominates this phenomenon. With an effective theory of the LLL projection, we also discuss dynamics of the vacuum decay, taking into account the back reaction of pair creations.Comment: 4 pages, 1 figure, contribution to the proceedings of International conference on the structure of baryons (BARYONS'10), RCNP, Osaka, Japan, Dec. 7-11, 2010; fig.2 delete

    Anthocyaninless1 gene of Arabidopsis thaliana encodes a UDP-glucose : flavonoid-3-O-glucosyltransferase

    Get PDF
    The original publication is available at www.springerllink.com.ArticleJOURNAL OF PLANT RESEARCH. 120(3): 445-449 (2007)journal articl

    Generation of Neuronal Diversity: Analogies and Homologies with Hematopoiesis

    Get PDF
    The immense variety of neuronal phenotypes in the vertebrate nervous system is apparent in considering just the process of chemical transmission. There are approximately 12 known classical neurotransmitters and more than 30 neuropeptides thus far identified, and individual neurons simultaneously synthesize, store, and secrete one or more classical transmitters in addition to three or more neuropeptides. The transmitters and peptides are expressed in an exceedingly large number of different combinations in different parts of the nervous system. Although there are useful generalizations as to the frequency of certain transmitter-peptide combinations, there are innumerable exceptions to these rules. How the particular combinations produced in each neuron are specified during development is a challenging question. The magnitude of this problem becomes clear if one calculates the number of possible combinations if a neuron is to produce 2 transmitters out of a possible 12 and 3 peptides out of a possible 30. There are 267,960 different potential phenotypes in this example

    Baryon charge from embedding topology and a continuous meson spectrum in a new holographic gauge theory

    Full text link
    We study a new holographic gauge theory based on probe D4-branes in the background dual to D4-branes on a circle with antiperiodic boundary conditions for fermions. Field theory configurations with baryons correspond to smooth embeddings of the probe D4-branes with nontrivial winding around an S^4 in the geometry. As a consequence, physics of baryons and nuclei can be studied reliably in this model using the abelian Born-Infeld action. However, surprisingly, we find that the meson spectrum is not discrete. This is related to a curious result that the action governing small fluctuations of the gauge field on the probe brane is the five-dimensional Maxwell action in Minkowski space despite the non-trivial embedding of the probe brane in the curved background geometry.Comment: 24 pages, LaTeX, 10 figures, v4: previously ignored effects of coupling to RR-fields included, meson spectrum qualitatively changed, v5: journal versio

    Baryonic Response of Dense Holographic QCD

    Full text link
    The response function of a homogeneous and dense hadronic system to a time-dependent (baryon) vector potential is discussed for holographic dense QCD (D4/D8 embedding) both in the confined and deconfined phases. Confined holographic QCD is an uncompressible and static baryonic insulator at large N_c and large \lambda, with a gapped vector spectrum and a massless pion. Deconfined holographic QCD is a diffusive conductor with restored chiral symmetry and a gapped transverse baryonic current. Similarly, dense D3/D7 is diffusive for any non-zero temperature at large N_c and large \lambda. At zero temperature dense D3/D7 exhibits a baryonic longitudinal visco-elastic mode with a first sound speed \lambda/\sqrt{3} and a small width due to a shear viscosity to baryon ratio \eta/n_B=\hbar/4. This mode is turned diffusive by arbitrarily small temperatures, a hallmark of holography.Comment: V2: 47 pages, 7 figures, references added, typos correcte

    Diquark Bose-Einstein condensation

    Full text link
    Bose-Einstein condensation (BEC) of composite diquarks in quark matter (the color superconductor phase) is discussed using the quasi-chemical equilibrium theory at a relatively low density region near the deconfinement phase transition, where dynamical quark-pair fluctuations are assumed to be described as bosonic degrees of freedom (diquarks). A general formulation is given for the diquark formation and particle-antiparticle pair-creation processes in the relativistic flamework, and some interesting properties are shown, which are characteristic for the relativistic many-body system. Behaviors of transition temperature and phase diagram of the quark-diquark matter are generally presented in model parameter space, and their asymptotic behaviors are also discussed. As an application to the color superconductivity, the transition temperatures and the quark and diquark density profiles are calculated in case with constituent/current quarks, where the diquark is in bound/resonant state. We obtained TC∌60−80T_C \sim 60-80 MeV for constituent quarks and TC∌130T_C \sim 130 MeV for current quarks at a moderate density (ρb∌3ρ0\rho_b \sim 3 \rho_0). The method is also developed to include interdiquark interactions into the quasi-chemical equilibrium theory within a mean-field approximation, and it is found that a possible repulsive diquark-diquark interaction lowers the transition temperature by nearly 50%.Comment: 21 pages, 23 figure

    Transport Properties of a Josephson-Coupled Network in a Superconductive Ceramic of YBa2Cu4O8

    Get PDF
    Ceramic YBa2Cu4O8 samples composed of sub-micron size grains are considered as random Josephson-coupled networks of 0 and π junctions, and they show successive phase transitions. The first transition occurs inside each grain at Tc1 and the second transition occurs among the grains at Tc2 (> Tc1), where a negative divergence of nonlinear susceptibility is found. This critical phenomenon at Tc2 suggests the onset of the chiral-glass phase, as predicted by Kawamura and Li. We measured the temperature dependencies of the current-voltage characteristics of the samples and derived the linear and nonlinear resistivities. With decreases in temperature, linear resistivity decreased monotonously and remained at a finite value at temperatures less than Tc2, while nonlinear resistivity diminished continuously for temperatures moving towards Tc2. These results are consistent with the theoretical predictions.Proceedings of the 25th International Conference on Low Temperature Physics (LT 25), August 6-13, 2008, Amsterdam, Netherland

    Well-Posedness for Semi-Relativistic Hartree Equations of Critical Type

    Full text link
    We prove local and global well-posedness for semi-relativistic, nonlinear Schr\"odinger equations i∂tu=−Δ+m2u+F(u)i \partial_t u = \sqrt{-\Delta + m^2} u + F(u) with initial data in Hs(R3)H^s(\mathbb{R}^3), s≄1/2s \geq 1/2. Here F(u)F(u) is a critical Hartree nonlinearity that corresponds to Coulomb or Yukawa type self-interactions. For focusing F(u)F(u), which arise in the quantum theory of boson stars, we derive a sufficient condition for global-in-time existence in terms of a solitary wave ground state. Our proof of well-posedness does not rely on Strichartz type estimates, and it enables us to add external potentials of a general class.Comment: 18 pages; replaced with revised version; remark and reference on blow up adde

    Baryons in Holographic QCD

    Get PDF
    We study the baryon in holographic QCD with D4/D8/D8ˉD4/D8/\bar{D8} multi-DD brane system. In holographic QCD, the baryon appears as a topologically non-trivial chiral soliton in a four-dimensional effective theory of mesons. We call this topological soliton as Brane-induced Skyrmion. Some review of D4/D8/D8ˉD4/D8/\bar{D8} holographic QCD is presented from the viewpoints of recent hadron physics and phenomenologies. Four-dimensional effective theory with pions and ρ\rho mesons is uniquely derived from the non-abelian Dirac-Born-Infeld (DBI) action of D8D8 brane with D4D4 supergravity background, without small amplitude expansion of meson fields to discuss chiral solitons. For the hedgehog configuration of pion and ρ\rho-meson fields, we derive the energy functional and the Euler-Lagrange equation of Brane-induced Skyrmion from the meson effective action induced by holographic QCD. Performing the numerical calculation, we obtain the pion profile F(r)F(r) and the ρ\rho-meson profile G(r)G(r) of the Brane-induced Skyrmion, and estimate its total energy, energy density distribution, and root-mean-square radius. These results are compared with the experimental quantities of baryons and also with the profiles of standard Skyrmion without ρ\rho mesons. We analyze interaction terms of pions and ρ\rho mesons in Brane-induced Skyrmion, and consider the role of ρ\rho-meson component appearing in baryons.Comment: 28 pages, 11 figure
    • 

    corecore