8 research outputs found

    Inferring robust gene networks from expression data by a sensitivity-based incremental evolution method

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reconstructing gene regulatory networks (GRNs) from expression data is one of the most important challenges in systems biology research. Many computational models and methods have been proposed to automate the process of network reconstruction. Inferring robust networks with desired behaviours remains challenging, however. This problem is related to network dynamics but has yet to be investigated using network modeling.</p> <p>Results</p> <p>We propose an incremental evolution approach for inferring GRNs that takes network robustness into consideration and can deal with a large number of network parameters. Our approach includes a sensitivity analysis procedure to iteratively select the most influential network parameters, and it uses a swarm intelligence procedure to perform parameter optimization. We have conducted a series of experiments to evaluate the external behaviors and internal robustness of the networks inferred by the proposed approach. The results and analyses have verified the effectiveness of our approach.</p> <p>Conclusions</p> <p>Sensitivity analysis is crucial to identifying the most sensitive parameters that govern the network dynamics. It can further be used to derive constraints for network parameters in the network reconstruction process. The experimental results show that the proposed approach can successfully infer robust GRNs with desired system behaviors.</p

    Longevity of the insecticidal effect of three pyrethroid formulations applied to outdoor vegetation on a laboratory-adapted colony of the Southeast Asian malaria vector Anopheles dirus.

    No full text
    Outdoor residual spraying is proposed for the control of exophilic mosquitoes. However, the residual effect of insecticide mists applied to outdoor resting habitats of mosquitoes is not well characterized. The objective of this study was to assess the longevity of the residual insecticidal effect of three pyrethroid formulations applied to outdoor vegetation against the Southeast Asian malaria vector Anopheles dirus. Lambda-cyhalothrin capsule suspension, deltamethrin emulsifiable concentrate and bifenthrin wettable powder were sprayed on dense bamboo bushes on the Thailand-Myanmar border during the dry season 2018. The duration and magnitude of the residual insecticidal effect were assessed weekly with a standard cone assay, using freshly collected insecticide-treated bamboo leaves and a laboratory-adapted colony of Anopheles dirus sensu stricto susceptible to pyrethroids. The experiment was repeated during the rainy season to assess the persistence of the lambda-cyhalothrin formulation after natural rains and artificial washings. During the dry season (cumulative rainfall = 28 mm in 111 days), mortality and knockdown (KD) rates were >80% for 60 days with bifenthrin and 90 days with lambda-cyhalothrin and deltamethrin. The 50% knockdown time (TKD50) was 80% for 42 days and TKD50 was <15 min with lambda-cyhalothrin. Additional artificial washing of the testing material with 10L of tap water before performing the cone tests had no significant effect on the residual insecticidal effect of this formulation. Long-lasting residual insecticidal effect can be obtained when spraying pyrethroid insecticides on the outdoor resting habitats of malaria vectors

    Impact of outdoor residual spraying on the biting rate of malaria vectors: A pilot study in four villages in Kayin state, Myanmar.

    No full text
    Outdoor and early mosquito biters challenge the efficacy of bed-nets and indoor residual spraying on the Thailand-Myanmar border. Outdoor residual spraying is proposed for the control of exophilic mosquito species. The objective of this study was to assess the impact of outdoor residual spraying on the biting rate of malaria vectors in Kayin state, Myanmar. Outdoor residual spraying using lambda-cyhalothrin was carried out in two villages in December 2016 (beginning of the dry season) and two villages were used as a control. Malaria mosquitoes were captured at baseline and monthly for four months after the intervention using human-landing catch and cow-baited trap collection methods. The impact of outdoor residual spraying on human-biting rate was estimated with propensity score adjusted generalized linear mixed-effect regressions. At baseline, mean indoor and outdoor human-biting rate estimates ranged between 2.12 and 29.16 bites /person /night, and between 0.20 and 1.72 bites /person /night in the intervention and control villages respectively. Using model output, we estimated that human-biting rate was reduced by 91% (95%CI = 88-96, P <0.0001) immediately after outdoor residual spraying. Human-biting rate remained low in all sprayed villages for 3 months after the intervention. Malaria vector populations rose at month 4 in the intervention villages but not in the controls. This coincided with the expected end of insecticide mist residual effects, thereby suggesting that residual effects are important determinants of intervention outcome. We conclude that outdoor residual spraying with a capsule suspension of lambda-cyhalothrin rapidly reduced the biting rate malaria vectors in this area where pyrethroid resistance has been documented

    Health and Human Rights in Eastern Myanmar after the Political Transition: A Population-Based Assessment Using Multistaged Household Cluster Sampling

    No full text
    Myanmar transitioned to a nominally civilian parliamentary government in March 2011. Qualitative reports suggest that exposure to violence and displacement has declined while international assistance for health services has increased. An assessment of the impact of these changes on the health and human rights situation has not been published.Five community-based organizations conducted household surveys using two-stage cluster sampling in five states in eastern Myanmar from July 2013-September 2013. Data was collected from 6, 178 households on demographics, mortality, health outcomes, water and sanitation, food security and nutrition, malaria, and human rights violations (HRV). Among children aged 6-59 months screened, the prevalence of global acute malnutrition (representing moderate or severe malnutrition) was 11.3% (8.0-14.7). A total of 250 deaths occurred during the year prior to the survey. Infant deaths accounted for 64 of these (IMR 94.2; 95% CI 66.5-133.5) and there were 94 child deaths (U5MR 141.9; 95% CI 94.8-189.0). 10.7% of households (95% CI 7.0-14.5) experienced at least one HRV in the past year, while four percent reported 2 or more HRVs. Household exposure to one or more HRVs was associated with moderate-severe malnutrition among children (14.9 vs. 6.8%; prevalence ratio 2.2, 95% CI 1.2-4.2). Household exposure to HRVs was associated with self-reported fair or poor health status among respondents (PR 1.3; 95% CI 1.1-1.5).This large survey of health and human rights demonstrates that two years after political transition, vulnerable populations of eastern Myanmar are less likely to experience human rights violations compared to previous surveys. However, access to health services remains constrained, and risk of disease and death remains higher than the country as a whole. Efforts to address these poor health indicators should prioritize support for populations that remain outside the scope of most formal government and donor programs

    Solid-state nanopore sensors

    No full text
    Nanopore-based sensors have established themselves as a prominent tool for solution-based, single-molecule analysis of the key building blocks of life, including nucleic acids, proteins, glycans and a large pool of biomolecules that have an essential role in life and healthcare. The predominant molecular readout method is based on measuring the temporal fluctuations in the ionic current through the pore. Recent advances in materials science and surface chemistries have not only enabled more robust and sensitive devices but also facilitated alternative detection modalities based on field-effect transistors, quantum tunnelling and optical methods such as fluorescence and plasmonic sensing. In this Review, we discuss recent advances in nanopore fabrication and sensing strategies that endow nanopores not only with sensitivity but also with selectivity and high throughput, and highlight some of the challenges that still need to be addressed

    Solid-state nanopore sensors

    No full text
    corecore