33 research outputs found

    Bias-correction in the CCAFS-Climate Portal: A description of methodologies

    Get PDF
    Global Climate Models (GCMs) have been the primary source of information for constructing climate scenarios, and they provide the basis for climate change impacts assessments of climate change at all scales, from local to global. However, impact studies rarely use GCM outputs directly because errors in GCM simulations relative to historical observations are large (Ramirez-Villegas et al. 2013), and because the spatial resolution is generally too coarse to satisfy the requirements for finer-scale impact studies. More specifically, the typical GCM spatial resolution (50 km or even more) is not practical for assessing agricultural landscapes, particularly in the tropics, where orographic and climatic conditions vary significantly across relatively small distances (Tabor & Williams, 2010). Hence, it is important to bias-correct and downscale the raw climate model outputs in order to produce climate projections that are better fit for agricultural modeling. Here we describe three different calibration approaches to produce reliable daily climate for future periods, employed in a new interface in CCAFS-Climate portal (www.ccafs-climate.org/data_bias_corrected/), as follows: (a) bias correction (or nudging) (Hawkins et al., 2013), (b) change factor (Hawkins et al., 2013) and (c) Quantile Mapping (Gudmundsson et al., 2012). In addition, briefly describe some observational datasets relevant to agricultural modeling and employed as the historical observations for the calibration methods mentioned here

    Guía de manejo agronómico de frijol arbustivo para pequeños agricultores

    Get PDF
    Este folleto se publica en el marco del proyecto “Soluciones Digitales Integradas Agroclimáticas – AgroClimas Fase II” (https://ccafs.cgiar.org/es/research/projects/soluciones-digitales-integradas-agroclimaticas), apoyado por el Programa de Investigación de CGIAR en Cambio Climático, Agricultura y Seguridad Alimentaria (CCAFS, sus siglas en inglés) y liderado por la Alianza Bioversity y el Centro Internacional de Agricultura Tropical (CIAT). Contiene una guía rápida de consideraciones para lpara el manejo agronómico de frijol arbustivo para pequeños agricultores de Guatemala

    50 years of changing diversity in global food supplies

    Get PDF
    Newly released infographics show how the so-called “globalized diet” has emerged. It’s the story of massive change over the past 50 years in the foods people eat, of crop winners and losers, and most of all, of increasing similarity in the food supplies of countries worldwide. Here are five graphs that together describe some of the the most important changes in food diversity over the past five decade

    Establecimiento de ensayos de campo de frijol en el tesac de olopa, guatemala, para evaluar la efectividad del uso de servicios climáticos participativos

    Get PDF
    En el TeSAC localizado en Olopa (Chiquimula), realizamos un trabajo de investigación junto con personas de la comunidad de La Prensa Centro, con el objetivo de determinar el efecto de dos sistemas de siembra de frijol en monocultivo, uno de la forma tradicional como lo hace el agricultor y otro de la forma técnicamente recomendada según las condiciones de las lluvias utilizando 5 variedades distintas de frijol, durante el periodo de postrera, como estrategia para mejorar la producción en épocas de lluvia y poder almacenar más grano para la alimentación familiar o la venta de excedentes durante el año. Se seleccionó un lote perteneciente a una agricultora cabeza de hogar que ha trabajado en el proceso del TeSAC por más de dos años, empoderándose en el uso de información agroclimática y la implementación de prácticas de agricultura sostenible adaptada al clima. El presente documento recopila los informes técnicos de avance de los ensayos desde su establecimiento hasta la cosecha. Este trabajo se realizó en el marco de una colaboración entre los proyectos Agroclimas Fase 2 y Territorios Sostenibles Adaptados al Clima (TeSAC) del programa de investigación del CGIAR sobre Cambio Climático, Agricultura y Seguridad Alimentaria (CCAFS), donde se buscó generar evidencia de la implementación de servicios climáticos participativos (utilizando la metodología PICSA)

    Abbreviations used in CCAFS climate

    Get PDF

    Coupling of pollination services and coffee suitability under climate change

    Full text link
    Climate change will cause geographic range shifts for pollinators and major crops, with global implications for food security and rural livelihoods. However, little is known about the potential for coupled impacts of climate change on pollinators and crops. Coffee production exemplifies this issue, because large losses in areas suitable for coffee production have been projected due to climate change and because coffee production is dependent on bee pollination. We modeled the potential distributions of coffee and coffee pollinators under current and future climates in Latin America to understand whether future coffee-suitable areas will also be suitable for pollinators. Our results suggest that coffee-suitable areas will be reduced 73–88% by 2050 across warming scenarios, a decline 46–76% greater than estimated by global assessments. Mean bee richness will decline 8–18% within future coffee-suitable areas, but all are predicted to contain at least 5 bee species, and 46–59% of future coffee-suitable areas will contain 10 or more species. In our models, coffee suitability and bee richness each increase (i.e., positive coupling) in 10–22% of future coffee-suitable areas. Diminished coffee suitability and bee richness (i.e., negative coupling), however, occur in 34–51% of other areas. Finally, in 31–33% of the future coffee distribution areas, bee richness decreases and coffee suitability increases. Assessing coupled effects of climate change on crop suitability and pollination can help target appropriate management practices, including forest conservation, shade adjustment, crop rotation, or status quo, in different regions
    corecore