7 research outputs found

    Aproveitamento dos jogos folclóricos na educação física

    Get PDF
    A pesquisa consistiu em entrevistar estudantes do primeiro e segundo graus e universitários, sobre suas preferências por certos jogos folclóricos; analisar a influência da idade (e, conseqüentemente, do grau de escolaridade) e do sexo a esse respeito; compilar as descrições feitas pelos entrevistados sobre os jogos e classificá-los, segundo o interesse em Educação FísicaThe research consisted in interviewing of first and second year college and university students about their preferences for certain folkloric games, in analysis of age (and consequently the degree of scholar development) and sex influence and compiling in result the descriptions made by the students of the games and classifying these descriptions according to interest in Physical Educatio

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Field and classroom initiatives for portable sequence-based monitoring of dengue virus in Brazil

    No full text
    This work was supported by Decit, SCTIE, Brazilian Ministry of Health, Conselho Nacional de Desenvolvimento Científico - CNPq (440685/ 2016-8, 440856/2016-7 and 421598/2018-2), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES - (88887.130716/2016-00), European Union’s Horizon 2020 Research and Innovation Programme under ZIKAlliance Grant Agreement (734548), STARBIOS (709517), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro – FAPERJ (E-26/2002.930/2016), International Development Research Centre (IDRC) Canada (108411-001), European Union’s Horizon 2020 under grant agreements ZIKACTION (734857) and ZIKAPLAN (734548).Fundação Ezequiel Dias. Laboratório Central de Saúde Pública do Estado de Minas Gerais. Belo Horizonte, MG, Brazil / Latin American Genomic Surveillance Arboviral Network.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil / Latin American Genomic Surveillance Arboviral Network.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil Latin American Genomic Surveillance Arboviral Network.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Leônidas e Maria Deane. Laboratório de Ecologia de Doenças Transmissíveis na Amazônia. Manaus, AM, Brazil.Secretaria de Saúde do Estado de Mato Grosso do Sul. Laboratório Central de Saúde Pública. Campo Grande, MS, Brazil.Fundação Ezequiel Dias. Laboratório Central de Saúde Pública do Estado de Minas Gerais. Belo Horizonte, MG, Brazil.Laboratório Central de Saúde Pública Dr. Giovanni Cysneiros. Goiânia, GO, Brazil.Laboratório Central de Saúde Pública Professor Gonçalo Moniz. Salvador, BA, Brazil.Secretaria de Saúde do Estado da Bahia. Salvador, BA, Brazil.Laboratório Central de Saúde Pública Dr. Milton Bezerra Sobral. Recife, PE, Brazil.Laboratório Central de Saúde Pública do Estado de Mato Grosso. Cuiabá, MT, Brazil.Laboratório Central de Saúde Pública do Distrito Federal. Brasília, DF, Brazil.Fundação Ezequiel Dias. Laboratório Central de Saúde Pública do Estado de Minas Gerais. Belo Horizonte, MG, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Coordenação Geral dos Laboratórios de Saúde Pública. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Coordenação Geral dos Laboratórios de Saúde Pública. Brasília, DF, Brazil.Organização Pan-Americana da Saúde / Organização Mundial da Saúde. Brasília, DF, Brazil.Organização Pan-Americana da Saúde / Organização Mundial da Saúde. Brasília, DF, Brazil.Organização Pan-Americana da Saúde / Organização Mundial da Saúde. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde Coordenação Geral das Arboviroses. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde Coordenação Geral das Arboviroses. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde Coordenação Geral das Arboviroses. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde Coordenação Geral das Arboviroses. Brasília, DF, Brazil.Fundação Hemocentro de Ribeirão Preto. Ribeirão Preto, SP, Brazil.Gorgas Memorial Institute for Health Studies. Panama, Panama.Universidade Federal da Bahia. Vitória da Conquista, BA, Brazil.Laboratorio Central de Salud Pública. Asunción, Paraguay.Fundação Oswaldo Cruz. Bio-Manguinhos. Rio de Janeiro, RJ, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Coordenação Geral dos Laboratórios de Saúde Pública. Brasília, DF, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, BrazilFundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, BrazilMinistério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Laboratório Central de Saúde Pública do Estado de Mato Grosso do Sul. Campo Grande, MS, Brazil.Laboratório Central de Saúde Pública do Estado de Mato Grosso do Sul. Campo Grande, MS, Brazil.Instituto de Investigaciones en Ciencias de la Salud. San Lorenzo, Paraguay.Secretaria de Estado de Saúde de Mato Grosso do Sul. Campo Grande, MS, Brazil.Fundação Oswaldo Cruz. Campo Grande, MS, Brazil.Fundação Hemocentro de Ribeirão Preto. Ribeirão Preto, SP, Brazil.Laboratório Central de Saúde Pública Dr. Giovanni Cysneiros. Goiânia, GO, Brazil.Laboratório Central de Saúde Pública Dr. Giovanni Cysneiros. Goiânia, GO, Brazil.Laboratório Central de Saúde Pública Professor Gonçalo Moniz. Salvador, BA, Brazil.Laboratório Central de Saúde Pública Dr. Milton Bezerra Sobral. Recife, PE, Brazil.Laboratório Central de Saúde Pública do Distrito Federal. Brasília, DF, Brazil.Secretaria de Saúde de Feira de Santana. Feira de Santana, Ba, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Secretaria de Saúde do Estado de Minas Gerais. Belo Horizonte, MG, Brazil.Hospital das Forças Armadas. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Brasília, DF, Brazil.Universidade Nova de Lisboa. Instituto de Higiene e Medicina Tropical. Lisboa, Portugal.University of Sydney. School of Life and Environmental Sciences and School of Medical Sciences. Marie Bashir Institute for Infectious Diseases and Biosecurity. Sydney, NSW, Australia.University of KwaZulu-Natal. College of Health Sciences. KwaZulu-Natal Research Innovation and Sequencing Platform. Durban, South Africa.University of Oxford. Peter Medawar Building. Department of Zoology. Oxford, UK.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Universidade Estadual de Feira de Santana. Salvador, BA, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brazil.Universidade de Brasília. Brasília, DF, Brazil.Universidade Salvador. Salvador, BA, Brazil.Fundação Ezequiel Dias. Belo Horizonte, MG, Brazil.Fundação Ezequiel Dias. Belo Horizonte, MG, Brazil.Fundação Ezequiel Dias. Belo Horizonte, MG, Brazil.Fundação Ezequiel Dias. Belo Horizonte, MG, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Hantaviroses e Rickettsioses. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Leônidas e Maria Deane. Laboratório de Ecologia de Doenças Transmissíveis na Amazônia. Manaus, AM, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Faculdade de Medicina Veterinária. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Faculdade de Medicina Veterinária. Belo Horizonte, MG, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brazil.Laboratório Central de Saúde Pública do Estado do Paraná. Curitiba, PR, Brazil.Laboratório Central de Saúde Pública do Estado de Rondônia. Porto Velho, RO, Brazil.Laboratório Central de Saúde Pública do Estado do Amazonas. Manaus, AM, Brazil.Laboratório Central de Saúde Pública do Estado do Rio Grande do Norte. Natal, RN, Brazil.Laboratório Central de Saúde Pública do Estado de Mato Grosso. Cuiabá, MT, Brazil.Laboratório Central de Saúde Pública Professor Gonçalo Moniz. Salvador, BA, Brazil.Laboratório Central de Saúde Pública Professor Gonçalo Moniz. Salvador, BA, Brazil.Laboratório Central de Saúde Pública Noel Nutels. Rio de Janeiro, RJ, Brazil.Instituto Adolfo Lutz. São Paulo, SP, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Universidade de São Paulo. Instituto de Medicina Tropical. São Paulo, SP, Brazil.Universidade de São Paulo. Instituto de Medicina Tropical. São Paulo, SP, Brazil.Universidade de São Paulo. Instituto de Medicina Tropical. São Paulo, SP, Brazil.University of Oxford. Peter Medawar Building. Department of Zoology. Oxford, UK.Instituto Nacional de Enfermedades Virales Humanas Dr. Julio Maiztegui. Pergamino, Argentina.Gorgas Memorial Institute for Health Studies. Panama, Panama.Gorgas Memorial Institute for Health Studies. Panama, Panama.Gorgas Memorial Institute for Health Studies. Panama, Panama.Instituto de Salud Pública de Chile. Santiago, Chile.Instituto de Diagnóstico y Referencia Epidemiológicos Dr. Manuel Martínez Báez. Ciudad de México, México.Instituto Nacional de Enfermedades Infecciosas Dr Carlos G Malbrán. Buenos Aires, Argentina.Ministerio de Salud Pública de Uruguay. Montevideo, Uruguay.Instituto Costarricense de Investigación y Enseñanza em Nutrición y Salud. Tres Ríos, Costa Rica.Instituto Nacional de Investigacion en Salud Publica Dr Leopoldo Izquieta Pérez. Guayaquil, Ecuador.Instituto Nacional de Investigacion en Salud Publica Dr Leopoldo Izquieta Pérez. Guayaquil, Ecuador.Universidade Federal de Pernambuco. Recife, PE, Brazil.Secretaria de Saúde do Estado de Minas Gerais. Belo Horizonte. MG, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Brasília, DF, Brazil.Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.Universidade Federal de Ouro Preto. Ouro Preto, MG, Brazil.Universidade Federal de Ouro Preto. Ouro Preto, MG, Brazil.Universidade Federal de Ouro Preto. Ouro Preto, MG, Brazil.Universidade Federal de Ouro Preto. Ouro Preto, MG, Brazil.Fundação Hemocentro de Ribeirão Preto. Ribeirão Preto, SP, Brazil.Secretaria de Saúde de Feira de Santana. Feira de Santana, BA, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Brazil experienced a large dengue virus (DENV) epidemic in 2019, highlighting a continuous struggle with effective control and public health preparedness. Using Oxford Nanopore sequencing, we led field and classroom initiatives for the monitoring of DENV in Brazil, generating 227 novel genome sequences of DENV1-2 from 85 municipalities (2015–2019). This equated to an over 50% increase in the number of DENV genomes from Brazil available in public databases. Using both phylogenetic and epidemiological models we retrospectively reconstructed the recent transmission history of DENV1-2. Phylogenetic analysis revealed complex patterns of transmission, with both lineage co-circulation and replacement. We identified two lineages within the DENV2 BR-4 clade, for which we estimated the effective reproduction number and pattern of seasonality. Overall, the surveillance outputs and training initiative described here serve as a proof-of-concept for the utility of real-time portable sequencing for research and local capacity building in the genomic surveillance of emerging viruses

    Intraoperative positive end-expiratory pressure and postoperative pulmonary complications: a patient-level meta-analysis of three randomised clinical trials.

    No full text

    High PEEP with recruitment maneuvers versus Low PEEP During General Anesthesia for Surgery -a Bayesian individual patient data meta-analysis of three randomized clinical trials

    No full text
    Background: The influence of high positive end-expiratory pressure (PEEP) with recruitment maneuvers on the occurrence of postoperative pulmonary complications after surgery is still not definitively established. Bayesian analysis can help to gain further insights from the available data and provide a probabilistic framework that is easier to interpret. Our objective was to estimate the posterior probability that the use of high PEEP with recruitment maneuvers is associated with reduced postoperative pulmonary complications in patients with intermediate-to-high risk under neutral, pessimistic, and optimistic expectations regarding the treatment effect. Methods: Multilevel Bayesian logistic regression analysis on individual patient data from three randomized clinical trials carried out on surgical patients at Intermediate-to-High Risk for postoperative pulmonary complications. The main outcome was the occurrence of postoperative pulmonary complications in the early postoperative period. We studied the effect of high PEEP with recruitment maneuvers versus Low PEEP Ventilation. Priors were chosen to reflect neutral, pessimistic, and optimistic expectations of the treatment effect. Results: Using a neutral, pessimistic, or optimistic prior, the posterior mean odds ratio (OR) for High PEEP with recruitment maneuvers compared to Low PEEP was 0.85 (95% Credible Interval [CrI] 0.71 to 1.02), 0.87 (0.72 to 1.04), and 0.86 (0.71 to 1.02), respectively. Regardless of prior beliefs, the posterior probability of experiencing a beneficial effect exceeded 90%. Subgroup analysis indicated a more pronounced effect in patients who underwent laparoscopy (OR: 0.67 [0.50 to 0.87]) and those at high risk for PPCs (OR: 0.80 [0.53 to 1.13]). Sensitivity analysis, considering severe postoperative pulmonary complications only or applying a different heterogeneity prior, yielded consistent results. Conclusion: High PEEP with recruitment maneuvers demonstrated a moderate reduction in the probability of PPC occurrence, with a high posterior probability of benefit observed consistently across various prior beliefs, particularly among patients who underwent laparoscopy

    Global variation in postoperative mortality and complications after cancer surgery: a multicentre, prospective cohort study in 82 countries

    No full text
    © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 licenseBackground: 80% of individuals with cancer will require a surgical procedure, yet little comparative data exist on early outcomes in low-income and middle-income countries (LMICs). We compared postoperative outcomes in breast, colorectal, and gastric cancer surgery in hospitals worldwide, focusing on the effect of disease stage and complications on postoperative mortality. Methods: This was a multicentre, international prospective cohort study of consecutive adult patients undergoing surgery for primary breast, colorectal, or gastric cancer requiring a skin incision done under general or neuraxial anaesthesia. The primary outcome was death or major complication within 30 days of surgery. Multilevel logistic regression determined relationships within three-level nested models of patients within hospitals and countries. Hospital-level infrastructure effects were explored with three-way mediation analyses. This study was registered with ClinicalTrials.gov, NCT03471494. Findings: Between April 1, 2018, and Jan 31, 2019, we enrolled 15 958 patients from 428 hospitals in 82 countries (high income 9106 patients, 31 countries; upper-middle income 2721 patients, 23 countries; or lower-middle income 4131 patients, 28 countries). Patients in LMICs presented with more advanced disease compared with patients in high-income countries. 30-day mortality was higher for gastric cancer in low-income or lower-middle-income countries (adjusted odds ratio 3·72, 95% CI 1·70–8·16) and for colorectal cancer in low-income or lower-middle-income countries (4·59, 2·39–8·80) and upper-middle-income countries (2·06, 1·11–3·83). No difference in 30-day mortality was seen in breast cancer. The proportion of patients who died after a major complication was greatest in low-income or lower-middle-income countries (6·15, 3·26–11·59) and upper-middle-income countries (3·89, 2·08–7·29). Postoperative death after complications was partly explained by patient factors (60%) and partly by hospital or country (40%). The absence of consistently available postoperative care facilities was associated with seven to 10 more deaths per 100 major complications in LMICs. Cancer stage alone explained little of the early variation in mortality or postoperative complications. Interpretation: Higher levels of mortality after cancer surgery in LMICs was not fully explained by later presentation of disease. The capacity to rescue patients from surgical complications is a tangible opportunity for meaningful intervention. Early death after cancer surgery might be reduced by policies focusing on strengthening perioperative care systems to detect and intervene in common complications. Funding: National Institute for Health Research Global Health Research Unit

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    No full text
    © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide. Methods: A multimethods analysis was performed as part of the GlobalSurg 3 study—a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital. Findings: Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3·85 [95% CI 2·58–5·75]; p<0·0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63·0% vs 82·7%; OR 0·35 [0·23–0·53]; p<0·0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer. Interpretation: Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised. Funding: National Institute for Health and Care Research
    corecore