6 research outputs found

    In vivo Dentin Microhardness beneath a Calcium-Phosphate Cement

    Full text link
    A minimally invasive caries-removal technique preserves potentially repairable, caries-affected dentin. Mineral-releasing cements may promote remineralization of soft residual dentin. This study evaluated the in vivo remineralization capacity of resin-based calcium-phosphate cement (Ca-PO4) used for indirect pulp-capping. Permanent carious and sound teeth indicated for extraction were excavated and restored either with or without the Ca-PO4 base (control), followed by adhesive restoration. Study teeth were extracted after 3 months, followed by sectioning and in vitro microhardness analysis of the cavity floor to 115-µm depth. Caries-affected dentin that received acid conditioning prior to Ca-PO4 basing showed significantly increased Knoop hardness near the cavity floor. The non-etched group presented results similar to those of the non-treated group. Acid etching prior to cement application increased microhardness of residual dentin near the interface after 3 months in situ

    In vivo

    Full text link

    Demineralization around restorations with different restorative materials containing fluoride

    Full text link
    The aim of this study was to evaluate in vitro the demineralization on tooth/restoration interface of eight restorative materials after demineralization/remineralization cycling. Eighty class V cavities were prepared with margins at enamel and dentin/cementum, and were restored with Fuji II LC, Fuji IX, Ketac-fil, Ketac Molar, Ariston pHc, Compoglass, Degufill Mineral and Z100. After the restorative procedures, the restorations were submitted to demineralization/ remineralization cycling during 14 days. Specimens were embedded in acrylic resin and submitted to serial sectioning. The sections were examined by optical microscope, and demineralization around restoration was measured on cervical and occlusal margins. The data were analyzed using the ANOVA and Tukey test (p<0.05). Glass ionomer cements showed less demineralization on enamel and dentin/restoration interfaces when compared to the tested composite resins (Z100 and Degufill Mineral). In conclusion, glass ionomer cements suffered less demineralization but did not protect completely the tooth/restoration interface
    corecore