1,561 research outputs found

    Topological phase in two flavor neutrino oscillations

    Full text link
    We show that the phase appearing in neutrino flavor oscillation formulae has a geometric and topological contribution. We identify a topological phase appearing in the two flavor neutrino oscillation formula using Pancharatnam's prescription of quantum collapses between non-orthogonal states. Such quantum collapses appear naturally in the expression for appearance and survival probabilities of neutrinos. Our analysis applies to neutrinos propagating in vacuum or through matter. For the minimal case of two flavors with CP conservation, our study shows for the first time that there is a geometric interpretation of the neutrino oscillation formulae for the detection probability of neutrino species.Comment: 11 pages, 3 figures, accepted in Phys. Rev.

    Prompt muon contribution to the flux underwater

    Get PDF
    We present high energy spectra and zenith-angle distributions of the atmospheric muons computed for the depths of the locations of the underwater neutrino telescopes. We compare the calculations with the data obtained in the Baikal and the AMANDA muon experiments. The prompt muon contribution to the muon flux underwater due to recent perturbative QCD-based models of the charm production is expected to be observable at depths of the large underwater neutrino telescopes. This appears to be probable even at rather shallow depths (1-2 km), provided that the energy threshold for muon detection is raised above 100\sim 100 TeV.Comment: 7 pages, RevTeX, 7 eps figures, final version to be published in Phys.Rev.D; a few changes made in the text and the figures, an approximation formula for muon spectra at the sea level, the muon zenith-angle distribution table data and references adde
    corecore