45 research outputs found

    Effectiveness of tailored digital health interventions for mental health at the workplace: A systematic review of randomised controlled trials

    Get PDF
    INTRODUCTION: Mental health problems in the workplace are common and have a considerable impact on employee wellbeing and productivity. Mental ill-health costs employers between £33 billion and £42 billion a year. According to a 2020 HSE report, roughly 2,440 per 100,000 workers in the UK were affected by work-related stress, depression, or anxiety, resulting in an estimated 17.9 million working days lost. This study is part of the EMPOWER study. The European Intervention to Promote Wellbeing and Health in the Workplace (EMPOWER) consortium’s aim is to create an individualised digital tool that promotes employee wellbeing, mental health, and work productivity. It has received funding from the European Union’s Horizon 2020 research https://ec.europa.eu/programmes/horizon2020/en/home) and innovation program under grant agreement No 848180. OBJECTIVES: We performed a systematic review of randomised controlled trials (RCTs) to assess the effect of tailored digital health interventions provided in the workplace aiming to improve mental health, presenteeism and absenteeism of employees. METHODS: We searched several databases for RCTs published from 2000 onwards. Data were extracted into a standardised data extraction form. The quality of the included studies was assessed using the Cochrane Risk of Bias tool. Due to the heterogeneity of outcome measures, narrative synthesis was used to summarise the findings. RESULTS: Seven RCTs (eight publications) were included that evaluated tailored digital interventions versus waiting list control or usual care to improve physical and mental health outcomes and work productivity. The results are promising to the advantage of tailored digital interventions regarding presenteeism, sleep, stress levels, and physical symptoms related to somatisation. There is less evidence for addressing depression, anxiety, and absenteeism in the general working population, but they significantly reduced depression and anxiety in employees with higher levels of psychological distress. CONCLUSIONS: Tailored digital interventions seem more effective in employees with higher levels of distress, presenteeism or absenteeism than in the general working population. However, so far, there are not many studies in this domain. Given the promising results, tailoring of digital interventions based upon employee input should be a focus in future research

    Differential Requirements for Clathrin-dependent Endocytosis at Sites of Cell–Substrate Adhesion

    Get PDF
    Little is known about the influences of cell–substrate attachment in clathrin-mediated endocytosis. We find that cell–substrate adhesion reduces the rate of endocytosis. In addition, we demonstrate that actin assembly is differentially required for efficient endocytosis, with a stronger requirement for actin dynamics at sites of adhesion

    Need for recovery from work in relation to age: a prospective cohort study

    Get PDF
    To investigate the impact of increasing age on the need for recovery (NFR) over time among day workers The study is based on data from the first 2 years of follow-up of the Maastricht Cohort Study (n = 7,734). To investigate whether age predicted the onset of elevated NFR, multivariate survival analyses were conducted The highest levels of NFR were observed in the age group of 46-55 years. The relative risk for developing elevated NFR was highest in the age groups 36-45 years (RR 1.30; 1.07-1.58) and 46-55 years (RR 1.25; 1.03-1.52) in men and 46-55 years (RR 1.36; 1.04-1.77) in women when compared to the reference group While NFR increased with age until the age of 55, this was followed by decreased levels of NFR among older employees. Explanations for the decreasing levels of NFR in the highest age group can be found in several domains such as the work environment, private situation and compensation strategies

    Regulatory domain selectivity in the cell-type specific PKN-dependence of cell migration

    Get PDF
    The mammalian protein kinase N (PKN) family of Serine/Threonine kinases comprises three isoforms, which are targets for Rho family GTPases. Small GTPases are major regulators of the cellular cytoskeleton, generating interest in the role(s) of specific PKN isoforms in processes such as cell migration and invasion. It has been reported that PKN3 is required for prostate tumour cell invasion but not PKN1 or 2. Here we employ a cell model, the 5637 bladder tumour cell line where PKN2 is relatively highly expressed, to assess the potential redundancy of these isoforms in migratory responses. It is established that PKN2 has a critical role in the migration and invasion of these cells. Furthermore, using a PKN wild-type and chimera rescue strategy, it is shown that PKN isoforms are not simply redundant in supporting migration, but appear to be linked through isoform specific regulatory domain properties to selective upstream signals. It is concluded that intervention in PKNs may need to be directed at multiple isoforms to be effective in different cell types

    Novel role of cPLA2α in membrane and actin dynamics

    Get PDF
    Actin-directed processes such as membrane ruffling and cell migration are regulated by specific signal transduction pathways that become activated by growth factor receptors. The same signaling pathways that lead to modifications in actin dynamics also activate cPLA2α. Moreover, arachidonic acid, the product of cPLA2α activity, is involved in regulation of actin dynamics. Therefore, it was investigated whether cPLA2α plays a role in actin dynamics, more specifically during growth factor-induced membrane ruffling and cell migration. Upon stimulation of ruffling and cell migration by growth factors, endogenous cPLA2α and its active phosphorylated form were shown to relocate at protrusions of the cell membrane involved in actin and membrane dynamics. Inhibition of cPLA2α activity with specific inhibitors blocked growth factor-induced membrane and actin dynamics, suggesting an important role for cPLA2α in these processes

    IKAP/Elp1 Is Required In Vivo for Neurogenesis and Neuronal Survival, but Not for Neural Crest Migration

    Get PDF
    Familial Dysautonomia (FD; Hereditary Sensory Autonomic Neuropathy; HSAN III) manifests from a failure in development of the peripheral sensory and autonomic nervous systems. The disease results from a point mutation in the IKBKAP gene, which encodes the IKAP protein, whose function is still unresolved in the developing nervous system. Since the neurons most severely depleted in the disease derive from the neural crest, and in light of data identifying a role for IKAP in cell motility and migration, it has been suggested that FD results from a disruption in neural crest migration. To determine the function of IKAP during development of the nervous system, we (1) first determined the spatial-temporal pattern of IKAP expression in the developing peripheral nervous system, from the onset of neural crest migration through the period of programmed cell death in the dorsal root ganglia, and (2) using RNAi, reduced expression of IKBKAP mRNA in the neural crest lineage throughout the process of dorsal root ganglia (DRG) development in chick embryos in ovo. Here we demonstrate that IKAP is not expressed by neural crest cells and instead is expressed as neurons differentiate both in the CNS and PNS, thus the devastation of the PNS in FD could not be due to disruptions in neural crest motility or migration. In addition, we show that alterations in the levels of IKAP, through both gain and loss of function studies, perturbs neuronal polarity, neuronal differentiation and survival. Thus IKAP plays pleiotropic roles in both the peripheral and central nervous systems

    Effects of IKAP/hELP1 Deficiency on Gene Expression in Differentiating Neuroblastoma Cells: Implications for Familial Dysautonomia

    Get PDF
    Familial dysautonomia (FD) is a developmental neuropathy of the sensory and autonomous nervous systems. The IKBKAP gene, encoding the IKAP/hELP1 subunit of the RNA polymerase II Elongator complex is mutated in FD patients, leading to a tissue-specific mis-splicing of the gene and to the absence of the protein in neuronal tissues. To elucidate the function of IKAP/hELP1 in the development of neuronal cells, we have downregulated IKBKAP expression in SHSY5Y cells, a neuroblastoma cell line of a neural crest origin. We have previously shown that these cells exhibit abnormal cell adhesion when allowed to differentiate under defined culture conditions on laminin substratum. Here, we report results of a microarray expression analysis of IKAP/hELP1 downregulated cells that were grown on laminin under differentiation or non-differentiation growth conditions. It is shown that under non-differentiation growth conditions, IKAP/hELP1 downregulation affects genes important for early developmental stages of the nervous system, including cell signaling, cell adhesion and neural crest migration. IKAP/hELP1 downregulation during differentiation affects the expression of genes that play a role in late neuronal development, in axonal projection and synapse formation and function. We also show that IKAP/hELP1 deficiency affects the expression of genes involved in calcium metabolism before and after differentiation of the neuroblastoma cells. Hence, our data support IKAP/hELP1 importance in the development and function of neuronal cells and contribute to the understanding of the FD phenotype

    Valmiina työelämään! Visioita ja näkökulmia työhyvinvointiin ja työelämävalmiuksiin ja menetelmiä niiden kehittämiseen

    No full text

    Occupational Risk Identification Using Hand-Held or Laptop Computers

    No full text
    This paper describes the Work Environment Profile (WEP) program and its use in risk identification by computer. It is installed into a hand-held computer or a laptop to be used in risk identification during work site visits. A 5-category system is used to describe the identified risks in 7 groups, i.e., accidents, biological and physical hazards, ergonomic and psychosocial load, chemicals, and information technology hazards. Each group contains several qualifying factors. These 5 categories are colour-coded at this stage to aid with visualization. Risk identification produces visual summary images the interpretation of which is facilitated by colours. The WEP program is a tool for risk assessment which is easy to learn and to use both by experts and nonprofessionals. It is especially well adapted to be used both in small and in larger enterprises. Considerable time is saved as no paper notes are needed
    corecore