50 research outputs found

    The orexin system: Roles in sleep/wake regulation

    Get PDF
    金沢大学医薬保健研究域医学系The neuropeptides orexin A and orexin B, produced in hypothalamic neurons, are critical regulators of sleep/wake states. Deficiency of orexin signaling results in narcoleptic phenotype in humans, dogs, and rodents. Recently, accumulating evidence has indicated that the orexin system regulates sleep and wakefulness through interactions with neuronal systems that are closely related with emotion, reward, and energy homeostasis. In this review, we will discuss the current understanding of the physiology of the orexin system especially focusing on its roles in the regulation of sleep/wakefulness states. © 2010 New York Academy of Sciences

    Activation of Bombesin receptor subtype-3 influences activity of orexin neurons by both direct and indirect pathways

    Get PDF
    金沢大学医薬保健研究域医学系The neuropeptides orexin A and orexin B (also known as hypocretin 1 and hypocretin 2), produced in lateral hypothalamic neurons, are critical regulators of feeding behavior, the reward system, and sleep/wake states. Orexin-producing neurons (orexin neurons) are regulated by various factors involved in regulation of energy homeostasis and sleep/wakefulness states. Bombesin receptor subtype 3 (BRS3) is an orphan receptor that might be implicated in energy homeostasis and is highly expressed in the hypothalamus. However, the neural pathway by which BRS3 regulates energy homeostasis is largely unknown. We examined whether BRS3 is involved in the regulation of orexin neurons. Using a calcium imaging method, we found that a selective BRS3 agonist [Ac-Phe-Trp-Ala-His-(τBzl)-Nip-Gly-Arg-NH2] increased the intracellular calcium concentration of orexin neurons. However, intracellular recordings from slice preparations revealed that the BRS3 agonist hyperpolarized orexin neurons. The BRS3 agonist depolarized orexin neuron in the presence of tetrodotoxin. Moreover, in the presence of GABA receptor blockers, picrotoxin and CGP55845, the BRS3 agonist induced depolarization and increased firing frequency. Additionally, double-label in situ hybridization study revealed that Brs3 mRNA was expressed in almost all orexin neurons and many cells around these neurons. These findings suggest that the BRS3 agonist indirectly inhibited orexin neurons through GABAergic input and directly activated orexin neurons. Inhibition of activity of orexin neurons through BRS3 might be an important pathway for regulation of feeding and sleep/wake states. This pathway might serve as a novel target for the treatment of obesity. © 2010 Springer Science+Business Media, LLC

    Serotonergic Input to Orexin Neurons Plays a Role in Maintaining Wakefulness and REM Sleep Architecture

    Get PDF
    Neurons expressing neuropeptide orexins (hypocretins) in the lateral hypothalamus (LH) and serotonergic neurons in the dorsal raphe nucleus (DR) both play important roles in the regulation of sleep/wakefulness states, and show similar firing patterns across sleep/wakefulness states. Orexin neurons send excitatory projections to serotonergic neurons in the DR, which express both subtypes of orexin receptors (Mieda et al., 2011), while serotonin (5-HT) potently inhibits orexin neurons through activation of 5HT1A receptors (5HT1ARs). In this study, we examined the physiological importance of serotonergic inhibitory regulation of orexin neurons by studying the phenotypes of mice lacking the 5HT1A receptor gene (Htr1a) specifically in orexin neurons (ox5HT1ARKO mice). ox5HT1ARKO mice exhibited longer NREM sleep time along with decreased wakefulness time in the later phase of the dark period. We also found that restraint stress induced a larger impact on REM sleep architecture in ox5HT1ARKO mice than in controls, with a larger delayed increase in REM sleep amount as compared with that in controls, indicating abnormality of REM sleep homeostasis in the mutants. These results suggest that 5HT1ARs in orexin neurons are essential in the regulation of sleep/wakefulness states, and that serotonergic regulation of orexin neurons plays a crucial role in the appropriate control of orexinergic tone to maintain normal sleep/wake architecture

    Effects of a newly developed potent orexin-2 receptor-selective antagonist, compound 1 m, on sleep/wakefulness states in mice

    Get PDF
    Orexins (also known as hypocretins) play critical roles in the regulation of sleep/wakefulness states by activating two G-protein coupled receptors (GPCRs), orexin 1 (OX1R) and orexin 2 receptors (OX2R). In order to understand the differential contribution of both receptors in regulating sleep/wakefulness states we compared the pharmacological effects of a newly developed OX2R antagonist (2-SORA), Compound 1 m (C1 m), with those of a dual orexin receptor antagonist (DORA), suvorexant, in C57BL/6J mice. After oral administration in the dark period, both C1m and suvorexant decreased wakefulness time with similar efficacy in a dose-dependent manner. While C1m primarily increased total non-rapid eye movement (NREM) sleep time without affecting episode durations and with minimal effects on REM sleep, suvorexant increased both total NREM and REM sleep time and episode durations with predominant effects on REM sleep. Fos-immunostaining showed that both compounds affected the activities of arousal-related neurons with different patterns. The number of Fos-IR noradrenergic neurons in the locus coeruleus was lower in the suvorexant group as compared with the control and C1m-treated groups. In contrast, the numbers of Fos-IR neurons in histaminergic neurons in the tuberomamillary nucleus and serotonergic neurons in the dorsal raphe were reduced to a similar extent in the suvorexant and C1m groups as compared with the vehicle-treated group. Together, these results suggest that an orexin-mediated suppression of REM sleep via potential activation of OX1Rs in the locus coeruleus may possibly contribute to the differential effects on sleep/wakefulness exerted by a DORA as compared to a 2-SORA. © 2014 Etori, Saito, Tsujino and Sakurai

    Thrombin Activates Ca2+-permeating Nonselective Cation Channels through Protein Kinase C in Human Umbilical Vein Endothelial Cells

    Get PDF
    We analyzed Ca-permeating nonselective cation channels (NSCs)mediating thrombin-induced contraction of human umbilical vein endothelial cells (HUVECs). A Ca chelater, BAPTA-AM (10μM), significantly inhibited the thrombin-induced contraction of HUVECs.Thrombin induced inward currents at -60 mV in the presence of intracellular MgATP. Removal of extracellular Caブグsignificantly decreased the currents. A selective phospholipase C inhibitor, U73122 (1μM) but not its inactive analogue, U73343 (1μM) almost completely inhibited the currents. Neither a selective inhibitor of Caブグ-ATPase of endoplasmic reticulum, thapsigargin (1μM)nor a diacylglycerol analogue, 1-oleoyl-2-acetyl-glycerol (30μM)activated the currents. However, a selective protein kinase C inhibitor, bisindolylmaleimide I (500 nM) significantly inhibited the currents.The thrombin-induced currents were significantly inhibited by SKF96365 (50μM)but not by La(1mM), ruthenium red (10μM) or flufenamic acid (100μM). As assessed with RT-PCR, HUVECs expressed transient receptor potential(TRP)M4,7,TRPV1,2,4,TRPC1,4 and 6 subunits of NSCs.These results indicate that thrombin activates Ca-permeating NSCs containing TRPC4 through protein kinase C in HUVECs. Thus,drugs specifically inhibiting TRPC4-containing channels might be effective to control fatal diseases such as sepsis where thrombin mediates the vicious cycle between inflammation and coagulation.Article信州医学雑誌 59(1): 13-26(2011)departmental bulletin pape

    GABAergic neurons in the preoptic area send direct inhibitory projections to orexin neurons

    Get PDF
    Populations of neurons in the hypothalamic preoptic area (POA) fire rapidly during sleep, exhibiting sleep/waking state-dependent firing patterns that are the reciprocal of those observed in the arousal system. The majority of these preoptic "sleep-active" neurons contain the inhibitory neurotransmitter GABA. On the other hand, a population of neurons in the lateral hypothalamic area (LHA) contains orexins, which play an important role in the maintenance of wakefulness, and exhibit an excitatory influence on arousal-related neurons. It is important to know the anatomical and functional interactions between the POA sleep-active neurons and orexin neurons, both of which play important, but opposite roles in regulation of sleep/wakefulness states. In this study, we confirmed that specific pharmacogenetic stimulation of GABAergic neurons in the POA leads to an increase in the amount of non-rapid eye movement (NREM) sleep. We next examined direct connectivity between POA GABAergic neurons and orexin neurons using channelrhodopsin 2 (ChR2) as an anterograde tracer as well as an optogenetic tool. We expressed ChR2-eYFP selectively in GABAergic neurons in the POA by AAV-mediated gene transfer, and examined the projection sites of ChR2-eYFP-expressing axons, and the effect of optogenetic stimulation of ChR2-eYFP on the activity of orexin neurons. We found that these neurons send widespread projections to wakefulness-related areas in the hypothalamus and brain stem, including the LHA where these fibers make close appositions to orexin neurons. Optogenetic stimulation of these fibers resulted in rapid inhibition of orexin neurons. These observations suggest direct connectivity between POA GABAergic neurons and orexin neurons. © 2013 Saito, Tsujino, Hasegawa, Akashi, Abe, Mieda, Sakimura and Sakurai

    Chronic Alterations in Monoaminergic Cells in the Locus Coeruleus in Orexin Neuron-Ablated Narcoleptic Mice

    Get PDF
    Narcolepsy patients often suffer from insomnia in addition to excessive daytime sleepiness. Narcoleptic animals also show behavioral instability characterized by frequent transitions between all vigilance states, exhibiting very short bouts of NREM sleep as well as wakefulness. The instability of wakefulness states in narcolepsy is thought to be due to deficiency of orexins, neuropeptides produced in the lateral hypothalamic neurons, which play a highly important role in maintaining wakefulness. However, the mechanism responsible for sleep instability in this disorder remains to be elucidated. Because firing of orexin neurons ceases during sleep in healthy animals, deficiency of orexins does not explain the abnormality of sleep. We hypothesized that chronic compensatory changes in the neurophysiologica activity of the locus coeruleus (LC) and dorsal raphe (DR) nucleus in response to the progressive loss of endogenous orexin tone underlie the pathological regulation of sleep/wake states. To evaluate this hypothesis, we examined firing patterns of serotonergic (5-HT) neurons and noradrenergic (NA) neurons in the brain stem, two important neuronal populations in the regulation of sleep/wakefulness states. We recorded single-unit activities of 5-HT neurons and NA neurons in the DR nucleus and LC of orexin neuron-ablated narcoleptic mice. We found that while the firing pattern of 5-HT neurons in narcoleptic mice was similar to that in wildtype mice, that of NA neurons was significantly different from that in wildtype mice. In narcoleptic mice, NA neurons showed a higher firing frequency during both wakefulness and NREM sleep as compared with wildtype mice. In vitro patch-clamp study of NA neurons of narcoleptic mice suggested a functional decrease of GABAergic input to these neurons. These alterations might play roles in the sleep abnormality in narcolepsy. © 2013 Tsujino et al

    Pharmacogenetic Modulation of Orexin Neurons Alters Sleep/Wakefulness States in Mice

    Get PDF
    Hypothalamic neurons expressing neuropeptide orexins are critically involved in the control of sleep and wakefulness. Although the activity of orexin neurons is thought to be influenced by various neuronal input as well as humoral factors, the direct consequences of changes in the activity of these neurons in an intact animal are largely unknown. We therefore examined the effects of orexin neuron-specific pharmacogenetic modulation in vivo by a new method called the Designer Receptors Exclusively Activated by Designer Drugs approach (DREADD). Using this system, we successfully activated and suppressed orexin neurons as measured by Fos staining. EEG and EMG recordings suggested that excitation of orexin neurons significantly increased the amount of time spent in wakefulness and decreased both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep times. Inhibition of orexin neurons decreased wakefulness time and increased NREM sleep time. These findings clearly show that changes in the activity of orexin neurons can alter the behavioral state of animals and also validate this novel approach for manipulating neuronal activity in awake, freely-moving animals
    corecore