2 research outputs found

    A case series of fatal meningoencephalitis in Mongolia: epidemiological and molecular characteristics of tick-borne encephalitis virus

    No full text
    In Mongolia, the incidence and fatality rates of tick-borne encephalitis (TBE) have been increasing. We aimed to identify the epidemiological and molecular characteristics of tick-borne encephalitis virus (TBEV) associated with fatal meningoencephalitis in Mongolia. We conducted a descriptive study of 14 fatal cases of TBE that occurred between 2008 and 2017 in Mongolia. Reverse transcription polymerase chain reaction (RT–PCR) was used to detect viral RNA in brain tissue. RT–PCR products from six patients who died from TBE between 2013 and 2017 were directly sequenced and analysed phylogenetically. Ticks collected from Selenge and Bulgan provinces were also tested for TBEV by RT–PCR. Between 2008 and 2017, there were 14 fatal TBE cases in hospitals in Mongolia. The 14 patients who died reported receiving tick bites in Bulgan or Selenge province; 71.4% of deaths resulted from tick bites in Bulgan province. The TBE case fatality rate was 28.6% for patients in Bulgan province and 2.7% for those in Selenge province. All of the fatalities were men; the median age was 45 ± 12.6 years. Tick bites occurred between April and June in forested areas. In 2013, a 388 base pair fragment of the envelope (E) gene was obtained from a hospitalized patient. The closest relatives of this virus are Far-Eastern TBEV isolates. The case fatality rate differed between two provinces where tick bites occurred. A higher number of TBE cases and the virulent Far-Eastern subtype occurred in patients in Bulgan province. This province should increase vaccination coverage, training, education and investigations

    Molecular epidemiology of SARS‐CoV‐2 in Mongolia, first experience with nanopore sequencing in lower‐ and middle‐income countries setting

    No full text
    Abstract Background Coronavirus disease (COVID‐19) has had a significant impact globally, and extensive genomic research has been conducted on severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) lineage patterns and its variants. Mongolia's effective response resulted in low prevalence until vaccinations became available. However, due to the lack of systematically collected data and absence of whole genome sequencing capabilities, we conducted a two‐stepped, nationally representative molecular epidemiologic study of SARS‐CoV‐2 in Mongolia for 2020 and 2021. Methods We used retrospective analysis of stored biological samples from November 2020 to October 2021 and a variant‐specific real‐time reverse transcription polymerase chain reaction (RT‐PCR) test to detect SARS‐CoV‐2 variants, followed by whole genome sequencing by Nanopore technology. Samples were retrieved from different sites and stored at −70°C deep freezer, and tests were performed on samples with cycle threshold <30. Results Out of 4879 nucleic acid tests, 799 whole genome sequencing had been carried out. Among the stored samples of earlier local transmission, we found the 20B (B.1.1.46) variant predominated in the earlier local transmission period. A slower introduction and circulation of alpha and delta variants were observed compared to global dynamics in 2020 and 2021. Beta or Gamma variants were not detected between November 2020 and September 2021 in Mongolia. Conclusions SARS‐CoV‐2 variants of concerns including alpha and delta were delayed in circulation potentially due to public health stringencies in Mongolia. We are sharing our initial experience with whole genome sequencing of SARS‐CoV‐2 from Mongolia, where sequencing data is sparse
    corecore