574 research outputs found

    Single-Particle Diffusion-Coefficient on Surfaces with Ehrlich-Schwoebel-Barriers

    Full text link
    The diffusion coefficient of single particles in the presence of Ehrlich-Schwoebel barriers (ESB)is considered. An exact expression is given for the diffusion coefficient on linear chains with random arrangements of ESB. The results are extended to surfaces having ESB with uniform extension in one or both directions. All results are verified by Monte Carlo simulations.Comment: 11 pages, LaTeX2e, 6 eps-figure

    Molecules participating in insect immunity of Sarcophaga peregrina

    Get PDF
    Pricking the body wall of Sarcophaga peregrina (flesh fly) larvae with a needle activated the immune system of this insect and induced various immune molecules, including antibacterial proteins, in the hemolymph. In this review, I summarize and discuss the functions of these immune molecules, with particular emphasis on the dual roles of some of these molecules in defense and development

    IL-12 Production Induced by Agaricus blazei Fraction H (ABH) Involves Toll-like Receptor (TLR)

    Get PDF
    Agaricus blazei Murill is an edible fungus used in traditional medicine, which has various well-documented medicinal properties. In the present study, we investigated the effects of hemicellulase-derived mycelia extract (Agaricus blazei fraction H: ABH) on the immune system. First, we examined the cytokine-inducing activity of ABH on human peripheral mononuclear cells (PBMC). The results indicated that ABH induced expression of IL-12, a cytokine known to be a critical regulator of cellular immune responses. Flow cytometric analysis demonstrated the induction of IL-12 production by the CD14-positive cell population, consisting of monocytes/macrophages (Mo/Mφ). Furthermore, the elimination of Mo/Mφ attenuated IL-12 production in PBMC. ABH-induced IL-12 production was inhibited by anti-CD14 and anti-TLR4 antibodies but not by anti-TLR2 antibody. The activity of ABH was not inhibited by polymyxin B, while the activity of lipopolysaccharide used as a reference was inhibited. Oral administration of ABH enhanced natural killer (NK) activity in the spleen. These findings suggest that ABH activated Mo/Mφ in a manner dependent on CD14/TLR4 and NK activity

    Fast and stable method for simulating quantum electron dynamics

    Full text link
    A fast and stable method is formulated to compute the time evolution of a wavefunction by numerically solving the time-dependent Schr{\"o}dinger equation. This method is a real space/real time evolution method implemented by several computational techniques such as Suzuki's exponential product, Cayley's form, the finite differential method and an operator named adhesive operator. This method conserves the norm of the wavefunction, manages periodic conditions and adaptive mesh refinement technique, and is suitable for vector- and parallel-type supercomputers. Applying this method to some simple electron dynamics, we confirmed the efficiency and accuracy of the method for simulating fast time-dependent quantum phenomena.Comment: 10 pages, 35 eps figure

    Two Dimensional Quantum Mechanical Modeling of Nanotransistors

    Full text link
    Quantization in the inversion layer and phase coherent transport are anticipated to have significant impact on device performance in 'ballistic' nanoscale transistors. While the role of some quantum effects have been analyzed qualitatively using simple one dimensional ballistic models, two dimensional (2D) quantum mechanical simulation is important for quantitative results. In this paper, we present a framework for 2D quantum mechanical simulation of a nanotransistor / Metal Oxide Field Effect Transistor (MOSFET). This framework consists of the non equilibrium Green's function equations solved self-consistently with Poisson's equation. Solution of this set of equations is computationally intensive. An efficient algorithm to calculate the quantum mechanical 2D electron density has been developed. The method presented is comprehensive in that treatment includes the three open boundary conditions, where the narrow channel region opens into physically broad source, drain and gate regions. Results are presented for (i) drain current versus drain and gate voltages, (ii) comparison to results from Medici, and (iii) gate tunneling current, using 2D potential profiles. Methods to reduce the gate leakage current are also discussed based on simulation results.Comment: 12 figures. Journal of Applied Physics (to appear

    Single-electron transistor effect in a two-terminal structure

    Full text link
    A peculiarity of the single-electron transistor effect makes it possible to observe this effect even in structures lacking a gate electrode altogether. The proposed method can be useful for experimental study of charging effects in structures with an extremely small central island confined between tunnel barriers like a nanometer-sized quantum dot or a macromolecule probed with a tunneling microscope), where it is impossible to provide a gate electrode for control of the tunnel current.Comment: 5 pages, 2 figure

    Study of a Threshold Cherenkov Counter Based on Silica Aerogels with Low Refractive Indices

    Full text link
    To identify π±\pi^{\pm} and K±K^{\pm} in the region of 1.0∼2.51.0\sim 2.5 GeV/c, a threshold Cherenkov counter equipped with silica aerogels has been investigated. Silica aerogels with a low refractive index of 1.013 have been successfully produced using a new technique. By making use of these aerogels as radiators, we have constructed a Cherenkov counter and have checked its properties in a test beam. The obtained results have demonstrated that our aerogel was transparent enough to make up for loss of the Cherenkov photon yield due to a low refractive index. Various configurations for the photon collection system and some types of photomultipliers, such as the fine-mesh type, for a read out were also tested. From these studies, our design of a Cherenkov counter dedicated to π/K\pi / K separation up to a few GeV/c %in the momentum range of 1.0∼2.51.0 \sim 2.5 GeV/c with an efficiency greater than 9090 \% was considered.Comment: 21 pages, latex format (article), figures included, to be published in Nucl. Instrm. Meth.

    Experimental investigation of relaminarizing and transitional channel flows

    Get PDF
    A hot-wire measurement was conducted in a planar channel flow that originated from a strongly disturbed flow in an entrance channel followed by an expansion channel used to reduce the Reynolds number (Re). From ceasing decrease of the streamwise velocity fluctuation energy and the linear extrapolation of the intermittency factor, the lower marginal Re, which is defined as the minimum Re for partial existence of sustainable turbulence, is estimated around 1400 based on the channel width and the bulk velocity. The upper marginal Re at which the intermittency factor reaches one is about 2600. The flow fields passing a turbulent patch were reconstructed with conditional sampling of the streamwise velocity data based on the time of laminar-turbulence interfaces and the reconstructed flow fields indicate a large-scale flow structure across laminar and turbulent parts. This large structure makes it possible for some regions to be at higher Re than the average, so that turbulence can partly survive. The moderate-scale disturbances larger than the turbulent one appear in the non-turbulent parts of the transitional flow, and in these cases the non-turbulent velocity profile is almost identical to the turbulent one. The large-scale fluctuation is observed even over Re = 2600. This leads to the conclusion that a turbulent channel flow close to the upper marginal Re becomes inhomogeneous. (C) 2012 American Institute of Physics. [https://doi.org/10.1063/1.4772065]ArticlePHYSICS OF FLUIDS. 24(12):124102 (2012)journal articl
    • …
    corecore