506,057 research outputs found
First Experiences Integrating PC Distributed I/O Into Argonne's ATLAS Control System
First Experiences Integrating PC Distributed I/O Into Argonne's ATLAS Control
System The roots of ATLAS (Argonne Tandem-Linac Accelerator System) date back
to the early 1960s. Located at the Argonne National Laboratory, the accelerator
has been designated a National User Facility, which focuses primarily on
heavy-ion nuclear physics. Like the accelerator it services, the control system
has been in a constant state of evolution. The present real-time portion of the
control system is based on the commercial product Vsystem [1]. While Vsystem
has always been capable of distributed I/O processing, the latest offering of
this product provides for the use of relatively inexpensive PC hardware and
software. This paper reviews the status of the ATLAS control system, and
describes first experiences with PC distributed I/O.Comment: ICALEPCS 2001 Conference, PSN WEAP027, 3 pages, 1 figur
Making a national atlas of population by computer
This paper describes the conceptual and practical problems encountered and solved in producing a multi-colour atlas of population characteristics in Great Britain. The atlas itself is in A4 format; it consists of some thirty-four maps of Great Britain in four colours and the same number of regional maps, together with descriptive text. All maps were plotted on a laser plotter with a resolution of 127 microns. The paper describes how mapping of ratios, such as percentages, was found to be highly misleading and describes the novel probability mapping solution adopted, based on the signed chi-square statistic. In addition, the rationale for selecting the class intervals and for selecting colour schemes is described
Prospects of New Physics searches using High Lumi - LHC
After the observation of a Higgs boson near 125 GeV, the high energy physics
community is investigating possible next steps for entering into a new era in
particle physics. It is planned that the Large Hadron Collider will deliver an
integrated luminosity of up to 3000/fb for the CMS and ATLAS experiments,
requiring several upgrades for all detectors. The reach of various
representative searches for supersymmetry and exotica physics with the upgraded
detectors are discussed in this context, where a very high instantaneous
luminosity will lead to a large number of pileup events in each bunch crossing.
This note presents example benchmark studies for new physics prospects with the
upgraded ATLAS and CMS detectors at a centre-of-mass energy of 14 TeV. Results
are shown for an integrated luminosity of 300/fb and 3000/fb.Comment: Plenary talk presented at Next Steps in the Energy Frontier - Hadron
Colliders Workshop, August 2014 - Fermi National Lab (FNAL). On behalf of the
ATLAS and CMS Collaboration
Atmospheric detectives: Atlas 2 teacher's guide with activities. For use with middle-school students
Can you imagine doing a science project in space? This is the challenging and exciting situation that researchers experience in Spacelab, the laboratory carried inside the Shuttle. Here, hundreds of kilometers above Earth's surface, the crews of the ATLAS missions scan, probe, and measure concentrations of chemicals and water vapor in Earth's protective bubble. So far, one ATLAS crew has rocketed into the atmosphere, watching many sunrises and sunsets come and go while activating delicate instruments and conducting experiments that monitor the complicated interactions between the Sun, the atmosphere, and Earth. We, the crew of ATLAS 2, will continue this important work aboard the Space Shuttle. Together, we will gather data that will be compared with information from satellites, balloons, and instruments on the ground. As part of the National Aeronautics and Space Administration's (NASA's) contribution to Mission to Planet Earth, ATLAS 2 will help develop a thorough picture of the Sun's output, its interaction with the atmosphere, and the well-being of Earth's middle atmosphere. Because the health of the atmosphere is of vital importance to all Earth's inhabitants, everyone should be part of this investigation. You can be active participants in exciting and vital activities: recycling and practicing other conservation methods and gathering information to learn more about how you can keep our atmosphere healthy now, as students, and in the future as informed citizens, scientists, technicians, and mathematicians
Metabolic network percolation quantifies biosynthetic capabilities across the human oral microbiome
The biosynthetic capabilities of microbes underlie their growth and interactions, playing a prominent role in microbial community structure. For large, diverse microbial communities, prediction of these capabilities is limited by uncertainty about metabolic functions and environmental conditions. To address this challenge, we propose a probabilistic method, inspired by percolation theory, to computationally quantify how robustly a genome-derived metabolic network produces a given set of metabolites under an ensemble of variable environments. We used this method to compile an atlas of predicted biosynthetic capabilities for 97 metabolites across 456 human oral microbes. This atlas captures taxonomically-related trends in biomass composition, and makes it possible to estimate inter-microbial metabolic distances that correlate with microbial co-occurrences. We also found a distinct cluster of fastidious/uncultivated taxa, including several Saccharibacteria (TM7) species, characterized by their abundant metabolic deficiencies. By embracing uncertainty, our approach can be broadly applied to understanding metabolic interactions in complex microbial ecosystems.T32GM008764 - NIGMS NIH HHS; T32 GM008764 - NIGMS NIH HHS; R01 DE024468 - NIDCR NIH HHS; R01 GM121950 - NIGMS NIH HHS; DE-SC0012627 - Biological and Environmental Research; RGP0020/2016 - Human Frontier Science Program; NSFOCE-BSF 1635070 - National Science Foundation; HR0011-15-C-0091 - Defense Advanced Research Projects Agency; R37DE016937 - NIDCR NIH HHS; R37 DE016937 - NIDCR NIH HHS; R01GM121950 - NIGMS NIH HHS; R01DE024468 - NIDCR NIH HHS; 1457695 - National Science FoundationPublished versio
Superulltramegalosesquipedalia
Recently, Jeff Grant of Hastings, New Zealand supplied the editor with the full 3641-letter name of the protein Bovine Glutamate Dehydrogenase, as constructed from the amino acid residue sequence shown in The Atlas of Protein Sequence and Structure (1973), Volume 5, Supplement 1, published by The National Biomedical Research Foundation. Although this word has been cited by the Guinness Book of Records since 1976 as the longest word known, it was never written out in full there, nor has it apparently been published anywhere else
Aqueduct Country and River Basin Rankings: A Weighted Aggregation of Spatially Distinct Hydrological Indicators
More and more countries around the world face high levels of water stress, but measuring and communicating that stress consistently is challenging. This paper ranks countries and river basins worldwide based on their exposure water-related risks. Specifically, it provides national and basin-level scores derived from more localized water-risk scores from the Aqueduct Water Risk Atlas. Rankings are available for 181 countries, the world's 100-largest river basins by area, and the planet's 100-most populous river basins for five different measures of water supply and demand
- …