87 research outputs found

    DeepPainter: Painter Classification Using Deep Convolutional Autoencoders

    Full text link
    In this paper we describe the problem of painter classification, and propose a novel approach based on deep convolutional autoencoder neural networks. While previous approaches relied on image processing and manual feature extraction from paintings, our approach operates on the raw pixel level, without any preprocessing or manual feature extraction. We first train a deep convolutional autoencoder on a dataset of paintings, and subsequently use it to initialize a supervised convolutional neural network for the classification phase. The proposed approach substantially outperforms previous methods, improving the previous state-of-the-art for the 3-painter classification problem from 90.44% accuracy (previous state-of-the-art) to 96.52% accuracy, i.e., a 63% reduction in error rate

    An Automatic Solver for Very Large Jigsaw Puzzles Using Genetic Algorithms

    Full text link
    In this paper we propose the first effective genetic algorithm (GA)-based jigsaw puzzle solver. We introduce a novel crossover procedure that merges two "parent" solutions to an improved "child" configuration by detecting, extracting, and combining correctly assembled puzzle segments. The solver proposed exhibits state-of-the-art performance, as far as handling previously attempted puzzles more accurately and efficiently, as well puzzle sizes that have not been attempted before. The extended experimental results provided in this paper include, among others, a thorough inspection of up to 30,745-piece puzzles (compared to previous attempts on 22,755-piece puzzles), using a considerably faster concurrent implementation of the algorithm. Furthermore, we explore the impact of different phases of the novel crossover operator by experimenting with several variants of the GA. Finally, we compare different fitness functions and their effect on the overall results of the GA-based solver.Comment: arXiv admin note: substantial text overlap with arXiv:1711.0676

    Image Registration of Very Large Images via Genetic Programming

    Full text link
    Image registration (IR) is a fundamental task in image processing for matching two or more images of the same scene taken at different times, from different viewpoints and/or by different sensors. Due to the enormous diversity of IR applications, automatic IR remains a challenging problem to this day. A wide range of techniques has been developed for various data types and problems. However, they might not handle effectively very large images, which give rise usually to more complex transformations, e.g., deformations and various other distortions. In this paper we present a genetic programming (GP)-based approach for IR, which could offer a significant advantage in dealing with very large images, as it does not make any prior assumptions about the transformation model. Thus, by incorporating certain generic building blocks into the proposed GP framework, we hope to realize a large set of specialized transformations that should yield accurate registration of very large images

    A Genetic Algorithm-Based Solver for Very Large Jigsaw Puzzles

    Full text link
    In this paper we propose the first effective automated, genetic algorithm (GA)-based jigsaw puzzle solver. We introduce a novel procedure of merging two "parent" solutions to an improved "child" solution by detecting, extracting, and combining correctly assembled puzzle segments. The solver proposed exhibits state-of-the-art performance solving previously attempted puzzles faster and far more accurately, and also puzzles of size never before attempted. Other contributions include the creation of a benchmark of large images, previously unavailable. We share the data sets and all of our results for future testing and comparative evaluation of jigsaw puzzle solvers.Comment: arXiv admin note: substantial text overlap with arXiv:1711.0676

    Genetic Algorithm-Based Solver for Very Large Multiple Jigsaw Puzzles of Unknown Dimensions and Piece Orientation

    Full text link
    In this paper we propose the first genetic algorithm (GA)-based solver for jigsaw puzzles of unknown puzzle dimensions and unknown piece location and orientation. Our solver uses a novel crossover technique, and sets a new state-of-the-art in terms of the puzzle sizes solved and the accuracy obtained. The results are significantly improved, even when compared to previous solvers assuming known puzzle dimensions. Moreover, the solver successfully contends with a mixed bag of multiple puzzle pieces, assembling simultaneously all puzzles

    DeepChess: End-to-End Deep Neural Network for Automatic Learning in Chess

    Full text link
    We present an end-to-end learning method for chess, relying on deep neural networks. Without any a priori knowledge, in particular without any knowledge regarding the rules of chess, a deep neural network is trained using a combination of unsupervised pretraining and supervised training. The unsupervised training extracts high level features from a given position, and the supervised training learns to compare two chess positions and select the more favorable one. The training relies entirely on datasets of several million chess games, and no further domain specific knowledge is incorporated. The experiments show that the resulting neural network (referred to as DeepChess) is on a par with state-of-the-art chess playing programs, which have been developed through many years of manual feature selection and tuning. DeepChess is the first end-to-end machine learning-based method that results in a grandmaster-level chess playing performance.Comment: Winner of Best Paper Award in ICANN 201

    A Generalized Genetic Algorithm-Based Solver for Very Large Jigsaw Puzzles of Complex Types

    Full text link
    In this paper we introduce new types of square-piece jigsaw puzzles, where in addition to the unknown location and orientation of each piece, a piece might also need to be flipped. These puzzles, which are associated with a number of real world problems, are considerably harder, from a computational standpoint. Specifically, we present a novel generalized genetic algorithm (GA)-based solver that can handle puzzle pieces of unknown location and orientation (Type 2 puzzles) and (two-sided) puzzle pieces of unknown location, orientation, and face (Type 4 puzzles). To the best of our knowledge, our solver provides a new state-of-the-art, solving previously attempted puzzles faster and far more accurately, handling puzzle sizes that have never been attempted before, and assembling the newly introduced two-sided puzzles automatically and effectively. This paper also presents, among other results, the most extensive set of experimental results, compiled as of yet, on Type 2 puzzles

    Expert-Driven Genetic Algorithms for Simulating Evaluation Functions

    Full text link
    In this paper we demonstrate how genetic algorithms can be used to reverse engineer an evaluation function's parameters for computer chess. Our results show that using an appropriate expert (or mentor), we can evolve a program that is on par with top tournament-playing chess programs, outperforming a two-time World Computer Chess Champion. This performance gain is achieved by evolving a program that mimics the behavior of a superior expert. The resulting evaluation function of the evolved program consists of a much smaller number of parameters than the expert's. The extended experimental results provided in this paper include a report of our successful participation in the 2008 World Computer Chess Championship. In principle, our expert-driven approach could be used in a wide range of problems for which appropriate experts are available.Comment: arXiv admin note: substantial text overlap with arXiv:1711.06839, arXiv:1711.0684

    Genetic Algorithms for Mentor-Assisted Evaluation Function Optimization

    Full text link
    In this paper we demonstrate how genetic algorithms can be used to reverse engineer an evaluation function's parameters for computer chess. Our results show that using an appropriate mentor, we can evolve a program that is on par with top tournament-playing chess programs, outperforming a two-time World Computer Chess Champion. This performance gain is achieved by evolving a program with a smaller number of parameters in its evaluation function to mimic the behavior of a superior mentor which uses a more extensive evaluation function. In principle, our mentor-assisted approach could be used in a wide range of problems for which appropriate mentors are available.Comment: Winner of Best Paper Award in GECCO 2008. arXiv admin note: substantial text overlap with arXiv:1711.06840, arXiv:1711.0684

    DNN-Buddies: A Deep Neural Network-Based Estimation Metric for the Jigsaw Puzzle Problem

    Full text link
    This paper introduces the first deep neural network-based estimation metric for the jigsaw puzzle problem. Given two puzzle piece edges, the neural network predicts whether or not they should be adjacent in the correct assembly of the puzzle, using nothing but the pixels of each piece. The proposed metric exhibits an extremely high precision even though no manual feature extraction is performed. When incorporated into an existing puzzle solver, the solution's accuracy increases significantly, achieving thereby a new state-of-the-art standard
    • …
    corecore