85 research outputs found

    Coherent, multi-heterodyne spectroscopy using stabilized optical frequency combs

    Full text link
    The broadband, coherent nature of narrow-linewidth fiber frequency combs is exploited to measure the full complex spectrum of a molecular gas through multi-heterodyne spectroscopy. We measure the absorption and phase shift experienced by each of 155,000 individual frequency comb lines, spaced by 100 MHz and spanning from 1495 nm to 1620 nm, after passing through a hydrogen cyanide gas. The measured phase spectrum agrees with Kramers-Kronig transformation of the absorption spectrum. This technique can provide a full complex spectrum rapidly, over wide bandwidths, and with hertz-level accuracy.Comment: 4 pages, 3 figure

    Broadband dual-comb hyperspectral imaging and adaptable spectroscopy with programmable frequency combs

    Full text link
    We explore the advantages of a free-form dual-comb spectroscopy (DCS) platform based on time-programmable frequency combs for real-time, penalty-free apodized scanning. In traditional DCS, the fundamental spectral resolution, which equals the comb repetition rate, can be excessively fine for many applications. While the fine resolution is not itself problematic, it comes with the penalty of excess acquisition time. Post-processing apodization (windowing) can be applied to tailor the resolution to the sample, but only with a deadtime penalty proportional to the degree of apodization. The excess acquisition time remains. With free-form DCS, this deadtime is avoided by programming a real-time apodization pattern that dynamically reverses the pulse periods between the dual frequency combs. In this way, one can tailor the spectrometer's resolution and update rate to different applications without penalty. We show operation of a free-form DCS system where the spectral resolution is varied from the intrinsic fine resolution of 160 MHz up to 822 GHz by applying tailored real-time apodization. Because there is no deadtime penalty, the spectral signal-to-noise ratio increases linearly with resolution by 5000x over this range, as opposed to the square root increase observed for postprocessing apodization in traditional DCS. We explore the flexibility to change resolution and update rate to perform hyperspectral imaging at slow camera frame rates, where the penalty-free apodization allows for optimal use of each frame. We obtain dual-comb hyperspectral movies at a 20 Hz spectrum update rate with broad optical spectral coverage of over 10 THz
    • 

    corecore