1 research outputs found

    Scaling Theory and Numerical Simulations of Aerogel Sintering

    Full text link
    A simple scaling theory for the sintering of fractal aerogels is presented. The densification at small scales is described by an increase of the lower cut-off length aa accompanied by a decrease of the upper cut-off length ξ\xi, in order to conserve the total mass of the system. Scaling laws are derived which predict how aa, ξ\xi and the specific pore surface area Σ\Sigma should depend on the density ρ\rho. Following the general ideas of the theory, numerical simulations of sintering are proposed starting from computer simulations of aerogel structure based on a diffusion-limited cluster-cluster aggregation gelling process. The numerical results for aa, ξ\xi and Σ\Sigma as a function of ρ\rho are discussed according to the initial aerogel density. The scaling theory is only fully recovered in the limit of very low density where the original values of aa and ξ\xi are well separated. These numerical results are compared with experiments on partially densified aerogels.Comment: RevTex, 17 pages + 6 postscript figures appended using "uufiles". To appear in J. of Non-Cryst. Solid
    corecore