5 research outputs found

    The ATPase Activity of Reptin Is Required for Its Effects on Tumor Cell Growth and Viability in Hepatocellular Carcinoma.: Requirement for Reptin ATPase activity in liver cancer

    No full text
    International audienceReptin is overexpressed in most human hepatocellular carcinomas. Reptin is involved in chromatin remodeling, transcription regulation, or supramolecular complexes assembly. Its silencing leads to growth arrest and apoptosis in cultured hepatocellular carcinoma cells and stops hepatocellular carcinoma progression in xenografts. Reptin has an ATPase activity linked to Walker A and B domains. It is unclear whether every Reptin function depends on its ATPase activity. Here, we expressed Walker B ATPase-dead mutants (D299N or E300G) in hepatocellular carcinoma cells in the presence of endogenous Reptin. Then, we silenced endogenous Reptin and substituted it with siRNA-resistant wild-type (WT) or Flag-Reptin mutants. There was a significant decrease in cell growth when expressing either mutant in the presence of endogenous Reptin, revealing a dominant negative effect of the ATPase dead mutants on hepatocellular carcinoma cell growth. Substitution of endogenous Reptin by WT Flag-Reptin rescued cell growth of HuH7. On the other hand, substitution by Flag-Reptin D299N or E300G led to cell growth arrest. Similar results were seen with Hep3B cells. Reptin silencing in HuH7 cells led to an increased apoptotic cell death, which was prevented by WT Flag-Reptin but not by the D299N mutant. These data show that Reptin functions relevant for cancer are dependent on its ATPase activity, and suggest that antagonists of Reptin ATPase activity may be useful as anticancer agents. Mol Cancer Res; 1-7. ©2012 AACR

    Liver Reptin/RUVBL2 controls glucose and lipid metabolism with opposite actions on mTORC1 and mTORC2 signalling

    No full text
    Objective The AAA+ AT Pase Reptin is overexpressed in hepatocellular carcinoma and preclinical studies indicate that it could be a relevant therapeutic target. However, its physiological and pathophysiological roles in vivo remain unknown. This study aimed to determine the role of Reptin in mammalian adult liver. Design and results We generated an inducible liver-specific Reptin knockout (Repin(LKO)) mouse model. Following Reptin invalidation, mice displayed decreased body and fat mass, hypoglycaemia and hypolipidaemia. This was associated with decreased hepatic mTOR protein abundance. Further experiments in primary hepatocytes demonstrated that Reptin maintains mTOR protein level through its AT Pase activity. Unexpectedly, loss or inhibition of Reptin induced an opposite effect on mTORC1 and mTORC2 signalling, with: (1) strong inhibition of hepatic mTORC1 activity, likely responsible for the reduction of hepatocytes cell size, for decreased de novo lipogenesis and cholesterol transcriptional programmes and (2) enhancement of mTORC2 activity associated with inhibition of the gluconeogenesis transcriptional programme and hepatic glucose production. Consequently, the role of hepatic Reptin in the pathogenesis of insulin resistance (IR) and non-alcoholic fatty liver disease consecutive to a high-fat diet was investigated. We found that Reptin deletion completely rescued pathological phenotypes associated with IR, including glucose intolerance, hyperglycaemia, hyperlipidaemia and hepatic steatosis. Conclusion We show here that the AAA+ AT Pase Reptin is a regulator of mTOR signalling in the liver and global glucido-lipidic homeostasis. Inhibition of hepatic Reptin expression or activity represents a new therapeutic perspective for metabolic syndrome.Innovations instrumentales et procédurales en psychopathologie expérimentale chez le rongeurFGF21 contrôle homéostasie glucidique via les facteurs de transcription ChREBP et PPAR
    corecore