19 research outputs found

    A Validated Ultrasound-Assisted Extraction Coupled with SPE-HPLC-DAD for the Determination of Flavonoids in By-Products of Plant Origin: An Application Study for the Valorization of the Walnut Septum Membrane

    No full text
    Walnut byproducts have been shown to exert functional properties, but the literature on their bioactive content is still scarce. Among walnut byproducts, walnut septum is a dry ligneous diaphragm tissue that divides the two halves of the kernel, exhibiting nutritional and medicinal properties. These functional properties are owing to its flavonoid content, and in order to explore the flavonoid fraction, an ultrasound-assisted (UAE) protocol was combined with solid phase extraction (SPE) and coupled to high-performance liquid chromatography with diode array detection (HPLC-DAD) for the determination of flavonoids in Greek walnut septa membranes belonging to Chandler, Vina, and Franquette varieties. The proposed UAE-SPE-HPLC-DAD method was validated and the relative standard deviations (RSD%) of the within-day and between-day assays were lower than 6.2 and 8.5, respectively, showing good precision, and high accuracy ranging from 90.8 (apigenin) to 97.5% (catechin) for within-day assay, and from 88.5 (myricetin) to 96.2% (catechin) for between-day assay. Overall, seven flavonoids were determined (catechin, rutin, myricetin, luteolin, quercetin, apigenin, and kaempferol) suggesting that the walnut septum is a rich source of bioactive constituents. The quantification results were further processed using ANOVA analysis to examine if there are statistically significant differences between the concentration of each flavonoid and the variety of the walnut septum

    Determination of the Toxic and Nutrient Element Content of Almonds, Walnuts, Hazelnuts and Pistachios by ICP-AES

    No full text
    The trace element content of thirty-two nuts including almonds, walnuts, hazelnuts and pistachios available in a Greek market was determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). Wet acid digestion using nitric acid (65%) took place in Teflon autoclaves. The limits of detection (LODs) and limits of quantification (LOQs) ranged between 0.01 (Mg)–2.52 (Cu) μg g−1 and 0.02 (Mg)–8.40 (Cu) μg g−1, respectively. Good method linearity (r2 > 0.9990) was observed for each element at the selected emission lines. The metals were quantified and one-way analysis of variance (ANOVA) was used to examine whether or not there were any statistically significant differences among the metal concentrations inside the different nut species

    Determination of Metals in Walnut Oils by Means of an Optimized and Validated ICP-AES Method in Conventional and Organic Farming Type Samples

    No full text
    Agricultural products are indispensable for equilibrated diets since they discharge minerals and several bioactive constituents. Considering the increasing demand for organic products, research has been conducted over recent years to investigate whether organically grown food products are chemically different compared to those produced with conventional farming. In this work, a novel inductively coupled plasma atomic emission spectrometric method was developed and validated for the determination of nutrient and toxic elements in walnut oils produced with conventional and organic farming. The method presented good linearity (r2 > 0.9990) for each element at the selected emission line. The limits of detection and limits of quantification ranged between 0.09 μg g−1 to 2.43 μg g−1 and 0.28 μg g−1 to 8.1 μg g−1, respectively. Method accuracy and was assessed by analyzing the certified reference materials BCR 278-R and spiked walnut oil samples. The determined metals were quantified, and the results were analyzed by Student’s t-test to investigate the differences in the elemental profile of the walnut oils according to type of farming (conventional or organic)

    Authentication of Greek PDO Kalamata Table Olives: A Novel Non-Target High Resolution Mass Spectrometric Approach

    No full text
    Food science continually requires the development of novel analytical methods to prevent fraudulent actions and guarantee food authenticity. Greek table olives, one of the most emblematic and valuable Greek national products, are often subjected to economically motivated fraud. In this work, a novel ultra-high-performance liquid chromatography–quadrupole time of flight tandem mass spectrometry (UHPLC-QTOF-MS) analytical method was developed to detect the mislabeling of Greek PDO Kalamata table olives, and thereby establish their authenticity. A non-targeted screening workflow was applied, coupled to advanced chemometric techniques such as Principal Component Analysis (PCA) and Partial Least Square Discriminant Analysis (PLS-DA) in order to fingerprint and accurately discriminate PDO Greek Kalamata olives from Kalamata (or Kalamon) type olives from Egypt and Chile. The method performance was evaluated using a target set of phenolic compounds and several validation parameters were calculated. Overall, 65 table olive samples from Greece, Egypt, and Chile were analyzed and processed for the model development and its accuracy was validated. The robustness of the chemometric model was tested using 11 Greek Kalamon olive samples that were produced during the following crop year, 2018, and they were successfully classified as Greek Kalamon olives from Kalamata. Twenty-six characteristic authenticity markers were indicated to be responsible for the discrimination of Kalamon olives of different geographical origins

    Microwave-Assisted Extraction Coupled to HPLC-UV Combined with Chemometrics for the Determination of Bioactive Compounds in Pistachio Nuts and the Guarantee of Quality and Authenticity

    No full text
    Two novel microwave-assisted extraction (MAE) methods were developed for the isolation of phenols and tocopherols from pistachio nuts. The extracts were analyzed by reversed-phase high-pressure liquid chromatography coupled with a UV detector (RP-HPLC-UV). In total, eighteen pistachio samples, originating from Greece and Turkey, were analyzed and thirteen phenolic compounds, as well as α-tocopherol, (β + γ)-tocopherol, and δ-tocopherol, were identified. The analytical methods were validated and presented good linearity (r2 > 0.990) and a high recovery rate over the range of 82.4 to 95.3% for phenols, and 93.1 to 96.4% for tocopherols. Repeatablility was calculated over the range 1.8–5.8%RSD for intra-day experiments, and reproducibility over the range 3.2–9.4%RSD for inter-day experiments, respectively. Principal component analysis (PCA) was employed to analyze the differences between the concentrations of the bioactive compounds with respect to geographical origin, while agglomerative hierarchical clustering (AHC) was used to cluster the samples based on their similarity and according to the geographical origin

    Investigating the Tocopherol Contents of Walnut Seed Oils Produced in Different European Countries Analyzed by HPLC-UV: A Comparative Study on the Basis of Geographical Origin

    No full text
    A rapid HPLC-UV method was developed for the determination of tocopherols in walnut seed oils. The method was validated and the LODs ranged between 0.15 and 0.30 mg/kg, while the LOQs were calculated over the range of 0.50 to 1.00 mg/kg. The accuracy values ranged between 90.8 and 97.1% for the within-day assay (n = 6) and between 90.4 and 95.8% for the between-day assay (n = 3 × 3), respectively. The precision of the method was evaluated and the RSD% values were lower than 6.1 and 8.2, respectively. Overall, 40 samples of walnuts available on the Greek market, originating from four different European countries (Greece, Ukraine, France, and Bulgaria), were processed into oils and analyzed. One-way ANOVA was implemented in order to investigate potential statistically significant disparities between the concentrations of tocopherols in the walnut oils on the basis of the geographical origin, and Tukey’s post hoc test was also performed to examine exactly which varieties differed. The statistical analysis of the results demonstrated that the Ukrainian walnut seed oils exhibited significantly higher total concentrations compared to the rest of the samples

    Monomers Release from Direct and Indirect Resin-Based Restorations after Immersion in Common Beverages

    No full text
    Impurities or degradation of the components of resin-based materials have been throughout investigated by the dental scientific community. The aim of this study is to examine if there is a release of monomers from resin-based materials when they are immersed in common beverage materials which are consumed by the population in large quantities. Three representative dental materials were used for this study, one resin composite indicated for direct restorations and two Computer Aided Design and Computer Aided Manufacturing (CAD/CAM) materials with different methods of fabrication. Forty specimens were fabricated from each material using a low-speed precision sectioning blade 12 × 14 × 2 mm in size and immersed in wine, coffee or cola for 48 h and 12 days, equivalent to 1 month and 1 year of consumption. The materials released more monomers when the materials were immersed in the wine solution (p p < 0.05). The CAD/CAM materials leach a limited quantity of monomers when they are immersed in common beverages due to the manufacturing process which includes high-temperature/high-pressure polymerization

    Rare Earths as Authenticity Markers for the Discrimination of Greek and Turkish Pistachios Using Elemental Metabolomics and Chemometrics

    No full text
    Pistachios are a nutritionally beneficial food source widely consumed all over the world. Pistachios exhibit high content of antioxidants, vitamins and other beneficial micronutrients, including nutrient elements and rare earth elements (REEs). Considering that the concentration of REEs depends on the climate and soil characteristics that vary among different geographical regions, REEs could constitute markers responsible for the geographical discrimination of this nut type. In this study, Greek pistachios with a protected designation of origin (PDO) label from Aegina Island and Fthiotida and Turkish pistachios from Adana were analyzed with inductively coupled plasma mass spectrometry (ICP-MS) to assess their REE profile. La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb were determined and quantified. The quantification results were further analyzed using the main effect plot, permutational analysis of variance (PERMANOVA), nonmetric multidimensional scaling (nMDS), principal component analysis (PCA) and hierarchical clustering (HCA) to investigate the similarities between the pistachios. A decision tree (DT) was developed for the classification of pistachios according to their geographical origin proving to be a promising and reliable tool for verifying the authenticity of food products on the basis of their REE profile

    Rare Earths as Authenticity Markers for the Discrimination of Greek and Turkish Pistachios Using Elemental Metabolomics and Chemometrics

    No full text
    Pistachios are a nutritionally beneficial food source widely consumed all over the world. Pistachios exhibit high content of antioxidants, vitamins and other beneficial micronutrients, including nutrient elements and rare earth elements (REEs). Considering that the concentration of REEs depends on the climate and soil characteristics that vary among different geographical regions, REEs could constitute markers responsible for the geographical discrimination of this nut type. In this study, Greek pistachios with a protected designation of origin (PDO) label from Aegina Island and Fthiotida and Turkish pistachios from Adana were analyzed with inductively coupled plasma mass spectrometry (ICP-MS) to assess their REE profile. La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb were determined and quantified. The quantification results were further analyzed using the main effect plot, permutational analysis of variance (PERMANOVA), nonmetric multidimensional scaling (nMDS), principal component analysis (PCA) and hierarchical clustering (HCA) to investigate the similarities between the pistachios. A decision tree (DT) was developed for the classification of pistachios according to their geographical origin proving to be a promising and reliable tool for verifying the authenticity of food products on the basis of their REE profile

    A Rapid HPLC-UV Protocol Coupled to Chemometric Analysis for the Determination of the Major Phenolic Constituents and Tocopherol Content in Almonds and the Discrimination of the Geographical Origin

    No full text
    Reversed phase-high-pressure liquid chromatographic methodologies equipped with UV detector (RP-HPLC-UV) were developed for the determination of phenolic compounds and tocopherols in almonds. Nineteen samples of Texas almonds originating from USA and Greece were analyzed and 7 phenolic acids, 7 flavonoids, and tocopherols (−α, −β + γ) were determined. The analytical methodologies were validated and presented excellent linearity (r2 &gt; 0.99), high recoveries over the range between 83.1 (syringic acid) to 95.5% (ferulic acid) for within-day assay (n = 6), and between 90.2 (diosmin) to 103.4% (rosmarinic acid) for between-day assay (n = 3 × 3), for phenolic compounds, and between 95.1 and 100.4% for within-day assay (n = 6), and between 93.2–96.2% for between-day assay (n = 3 × 3) for tocopherols. The analytes were further quantified, and the results were analyzed by principal component analysis (PCA), and agglomerative hierarchical clustering (AHC) to investigate potential differences between the bioactive content of almonds and the geographical origin. A decision tree (DT) was developed for the prediction of the geographical origin of almonds proposing a characteristic marker with a concentration threshold, proving to be a promising and reliable tool for the guarantee of the authenticity of the almonds
    corecore