661 research outputs found
Bomb radiocarbon and tag-recapture dating of sandbar shark (Carcharhinus plumbeus)
The sandbar shark (Carcharhinus plumbeus) was the cornerstone species of western North Atlantic and Gulf of Mexico large coastal shark fisheries until 2008 when they
were allocated to a research-only fishery. Despite decades of fishing on this species, important life history
parameters, such as age and growth, have not been well known. Some validated age and growth information exists for sandbar shark, but more comprehensive life history information is needed. The complementary application of bomb radiocarbon and tag-recapture dating was used in this
study to determine valid age-estimation criteria and longevity estimates for this species. These two methods
indicated that current age interpretations based on counts of growth bands in vertebrae are accurate to 10 or 12 years. Beyond these years, we could not determine with certainty when such an underestimation of age begins; however, bomb radiocarbon and tag-recapture data indicated that large adult sharks were considerably older than the estimates derived from counts of growth bands. Three adult sandbar sharks were 20 to 26 years old based on bomb radiocarbon results and were a 5- to 11-year increase over the previous age estimates for these sharks. In support of
these findings, the tag-recapture data provided results that were consistent with bomb radiocarbon dating and
further supported a longevity that exceeds 30 years for this species
DRASTICâINSIGHTS:querying information in a plant gene expression database
DRASTICââDatabase Resource for the Analysis of Signal Transduction In Cells (http://www.drastic.org.uk/) has been created as a first step towards a data-based approach for constructing signal transduction pathways. DRASTIC is a relational database of plant expressed sequence tags and genes up- or down-regulated in response to various pathogens, chemical exposure or other treatments such as drought, salt and low temperature. More than 17700 records have been obtained from 306 treatments affecting 73 plant species from 512 peer-reviewed publications with most emphasis being placed on data from Arabidopsis thaliana. DRASTIC has been developed by the Scottish Crop Research Institute and the Abertay University and allows rapid identification of plant genes that are up- or down-regulated by multiple treatments and those that are regulated by a very limited (or perhaps a single) treatment. The INSIGHTS (INference of cell SIGnaling HypoTheseS) suite of web-based tools allows intelligent data mining and extraction of information from the DRASTIC database. Potential response pathways can be visualized and comparisons made between gene expression patterns in response to various treatments. The knowledge gained informs plant signalling pathways and systems biology investigations
A PC-based magnetometer-only attitude and rate determination system for gyroless spacecraft
This paper describes a prototype PC-based system that uses measurements from a three-axis magnetometer (TAM) to estimate the state (three-axis attitude and rates) of a spacecraft given no a priori information other than the mass properties. The system uses two algorithms that estimate the spacecraft's state - a deterministic magnetic-field only algorithm and a Kalman filter for gyroless spacecraft. The algorithms are combined by invoking the deterministic algorithm to generate the spacecraft state at epoch using a small batch of data and then using this deterministic epoch solution as the initial condition for the Kalman filter during the production run. System input comprises processed data that includes TAM and reference magnetic field data. Additional information, such as control system data and measurements from line-of-sight sensors, can be input to the system if available. Test results are presented using in-flight data from two three-axis stabilized spacecraft: Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) (gyroless, Sun-pointing) and Earth Radiation Budget Satellite (ERBS) (gyro-based, Earth-pointing). The results show that, using as little as 700 s of data, the system is capable of accuracies of 1.5 deg in attitude and 0.01 deg/s in rates; i.e., within SAMPEX mission requirements
Irreducible decomposition of Gaussian distributions and the spectrum of black-body radiation
It is shown that the energy of a mode of a classical chaotic field, following
the continuous exponential distribution as a classical random variable, can be
uniquely decomposed into a sum of its fractional part and of its integer part.
The integer part is a discrete random variable (we call it Planck variable)
whose distribution is just the Bose distribution yielding the Planck law of
black-body radiation. The fractional part is the dark part (we call is dark
variable) with a continuous distribution, which is, of course, not observed in
the experiments. It is proved that the Bose distribution is infinitely
divisible, and the irreducible decomposition of it is given. The Planck
variable can be decomposed into an infinite sum of independent binary random
variables representing the binary photons (more accurately photo-molecules or
photo-multiplets) of energies 2^s*h*nu with s=0,1,2... . These binary photons
follow the Fermi statistics. Consequently, the black-body radiation can be
viewed as a mixture of statistically and thermodynamically independent fermion
gases consisting of binary photons. The binary photons give a natural tool for
the dyadic expansion of arbitrary (but not coherent) ordinary photon
excitations. It is shown that the binary photons have wave-particle
fluctuations of fermions. These fluctuations combine to give the wave-particle
fluctuations of the original bosonic photons expressed by the Einstein
fluctuation formula.Comment: 29 page
Magnetometer-only attitude and rate determination for a gyro-less spacecraft
Attitude determination algorithms that requires only the earth's magnetic field will be useful for contingency conditions. One way to determine attitude is to use the time derivative of the magnetic field as the second vector in the attitude determination process. When no gyros are available, however, attitude determination becomes difficult because the rates must be propagated via integration of Euler's equation, which in turn requires knowledge of the initial rates. The spacecraft state to be determined must then include not only the attitude but also rates. This paper describes a magnetometer-only attitude determination scheme with no a priori knowledge of the spacecraft state, which uses a deterministic algorithm to initialize an extended Kalman filter. The deterministic algorithm uses Euler's equation to relate the time derivatives of the magnetic field in the reference and body frames and solves the resultant transcendental equations for the coarse attitude and rates. An important feature of the filter is that its state vector also includes corrections to the propagated rates, thus enabling it to generate highly accurate solutions. The method was tested using in-flight data from the Solar, Anomalous, and Magnetospheric Particles Explorer (SAMPEX), a Small Explorer spacecraft. SAMPEX data using several eclipse periods were used to simulate conditions that may exist during the failure of the on-board digital sun sensor. The combined algorithm has been found effective, yielding accuracies of 1.5 deg in attitude (within even nominal mission requirements) and 0.01 degree per second (deg/sec) in the rates
Advantages of estimating rate corrections during dynamic propagation of spacecraft rates: Applications to real-time attitude determination of SAMPEX
This paper describes real-time attitude determination results for the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), a gyroless spacecraft, using a Kalman filter/Euler equation approach denoted the real-time sequential filter (RTSF). The RTSF is an extended Kalman filter whose state vector includes the attitude quaternion and corrections to the rates, which are modeled as Markov processes with small time constants. The rate corrections impart a significant robustness to the RTSF against errors in modeling the environmental and control torques, as well as errors in the initial attitude and rates, while maintaining a small state vector. SAMPLEX flight data from various mission phases are used to demonstrate the robustness of the RTSF against a priori attitude and rate errors of up to 90 deg and 0.5 deg/sec, respectively, as well as a sensitivity of 0.0003 deg/sec in estimating rate corrections in torque computations. In contrast, it is shown that the RTSF attitude estimates without the rate corrections can degrade rapidly. RTSF advantages over single-frame attitude determination algorithms are also demonstrated through (1) substantial improvements in attitude solutions during sun-magnetic field coalignment and (2) magnetic-field-only attitude and rate estimation during the spacecraft's sun-acquisition mode. A robust magnetometer-only attitude-and-rate determination method is also developed to provide for the contingency when both sun data as well as a priori knowledge of the spacecraft state are unavailable. This method includes a deterministic algorithm used to initialize the RTSF with coarse estimates of the spacecraft attitude and rates. The combined algorithm has been found effective, yielding accuracies of 1.5 deg in attitude and 0.01 deg/sec in the rates and convergence times as little as 400 sec
Einstein's fluctuation formula. A historical overview
A historical overview is given on the basic results which appeared by the
year 1926 concerning Einstein's fluctuation formula of black-body radiation, in
the context of light-quanta and wave-particle duality. On the basis of the
original publications (from Planck's derivation of the black-body spectrum and
Einstein's introduction of the photons up to the results of Born, Heisenberg
and Jordan on the quantization of a continuum) a comparative study is presented
on the first line of thoughts that led to the concept of quanta. The nature of
the particle-like fluctuations and the wave-like fluctuations are analysed by
using several approaches. With the help of the classical probability theory, it
is shown that the infinite divisibility of the Bose distribution leads to the
new concept of classical poissonian photo-multiplets or to the binary
photo-multiplets of fermionic character. As an application, Einstein's
fluctuation formula is derived as a sum of fermion type fluctuations of the
binary photo-multiplets.Comment: 34 page
Engineering tyrosine-based electron flow pathways in proteins: The case of aplysia myoglobin
Tyrosine residues can act as redox cofactors that provide an electron transfer ("hole-hopping") route that enhances the rate of ferryl heme iron reduction by externally added reductants, for example, ascorbate. Aplysia fasciata myoglobin, having no naturally occurring tyrosines but 15 phenylalanines that can be selectively mutated to tyrosine residues, provides an ideal protein with which to study such through-protein electron transfer pathways and ways to manipulate them. Two surface exposed phenylalanines that are close to the heme have been mutated to tyrosines (F42Y, F98Y). In both of these, the rate of ferryl heme reduction increased by up to 3 orders of magnitude. This result cannot be explained in terms of distance or redox potential change between donor and acceptor but indicates that tyrosines, by virtue of their ability to form radicals, act as redox cofactors in a new pathway. The mechanism is discussed in terms of the Marcus theory and the specific protonation/deprotonation states of the oxoferryl iron and tyrosine. Tyrosine radicals have been observed and quantified by EPR spectroscopy in both mutants, consistent with the proposed mechanism. The location of each radical is unambiguous and allows us to validate theoretical methods that assign radical location on the basis of EPR hyperfine structure. Mutation to tyrosine decreases the lipid peroxidase activity of this myoglobin in the presence of low concentrations of reductant, and the possibility of decreasing the intrinsic toxicity of hemoglobin by introduction of these pathways is discussed. © 2012 American Chemical Society
Recommended from our members
Application of Bomb Radiocarbon Chronologies to Shortfin Mako (Isurus oxyrinchus)
There is an ongoing disagreement regarding the aging of the shortfin mako due to a difference of interpretation in the periodic deposition of vertebral growth band pairs, especially for the larger size classes. Using analysis of length-month information, tagging data, and length-frequency analysis, concluded that two band pairs were formed in the vertebral centrum every year (biannual band-pair interpretation). Cailliet et al. (1983), however, presented growth parameters based on the common assumption that one band pair forms annually (annual band-pair interpretation). Therefore, growth rates obtained by Pratt & Casey (1983) were twice that of Cailliet et al. (1983) and could lead to age discrepancies of about 15 years for maximum estimated ages on the order of 30 from the annual band-pair interpretation. Serious consequences in the population dynamics could occur for this species if inputs are based on an invalid age interpretation. The latest Fishery Management Plan (FMP) for Highly Migratory Species (HMS), for example, adopted the biannual band pair deposition hypothesis because it apparently fit the observed growth patterns best (Pacific Fishery Management Council 2003). However, the ongoing uncertainty about the aging of the shortfin mako was acknowledged and it was recommended that an endeavor to resolve this issue be made. Since 1983, five additional studies on the age and growth of the shortfin mako have been conducted (Chan 2001, Campana et al. 2002, Hsu 2003, Ribot-Carballal et al. 2005, Bishop et al. 2006). Using Marginal Increment Ratio (MIR), Hsu (2003) indicated the formation of annual translucent bands from July to September in western North Pacific Ocean shortfin makos. Using Marginal Increment Analysis (MIA) Ribot-Carballal et al. (2005) supported the annual band-pair interpretation for 109 shortfin makos collected in the eastern Pacific Ocean. Although the study provided support for annual band-pair deposition, no statistical test was performed and the number of samples for MIA analysis was insufficient for some months. Hence, unequivocal validation of shortfin mako age estimates has yet to be accomplished. Atmospheric testing of thermonuclear devices in the 1950s and 1960s effectively doubled the natural atmospheric radiocarbon ({sup 14}C). The elevated {sup 14}C levels were first recorded in 1957-58, with a peak around 1963. As a consequence, {sup 14}C entered the ocean through gas exchange with the atmosphere at the ocean surface and in terrestrial runoff. Despite variable oceanographic conditions, a worldwide rise of the bomb {sup 14}C signal entered the ocean mixed layer as dissolved inorganic carbon (DIC) in 1957-58. The large amounts of {sup 14}C released from the bomb tests produced a signature that can be followed through time, throughout the marine food web, and into deeper waters. The marked increase of radiocarbon levels was first measured in the DIC of seawater and in biogenic marine carbonates of hermatypic corals in Florida. Subsequently, this record was documented in corals from other regions and in the thallus of rhodoliths. The accumulation of radiocarbon in the hard parts of most marine organisms in the mixed layer (such as fish otoliths and bivalves) was synchronous with the coral time-series. This technique has been used to validate age estimates and longevity of numerous bony fishes to date, as well as to establish bomb radiocarbon chronologies from different oceans. In the first application of this technique to lamnoid sharks, validated annual band-pair deposition in vertebral growth bands for the porbeagle (Lamna nasus) aged up to 26 years. Radiocarbon values from samples obtained from 15 porbeagle caught in the western North Atlantic Ocean (some of which were known-age) produced a chronology similar in magnitude to the reference carbonate chronology for that region. The observed phase shift of about 3 years was attributed to different sources of carbon between vertebrae and those for otoliths, bivalves and corals. In the same study by Campana et al. (2002), a single vertebra from a shortfin mako caught in 1977 was aged at 21 and 10 years, using the annual versus the biannual deposition hypotheses, respectively. Vertebral samples were extracted from the first, last, and two intermediate bands and were assayed for radiocarbon. The results indicated the aging interpretation for the vertebra from this fish best fit the timing of the porbeagle time-series by adopting the annual band-pair interpretation. To provide a more comprehensive basis for valid aging criteria and a definitive growth function for the shortfin mako, more radiocarbon assays were required. The goal of our research was to take heed of this suggestion and continue the use of bomb radiocarbon to validate the aging of the shortfin mako, and specifically to resolve the validity of either annual or biannual band-pair age interpretations
- âŠ