289 research outputs found
XMM-Newton and NuSTAR simultaneous X-ray observations of IGR J11215-5952
We report the results of an XMM-Newton and NuSTAR coordinated observation of
the Supergiant Fast X-ray Transient (SFXT) IGRJ11215-5952, performed on
February 14, 2016, during the expected peak of its brief outburst, which
repeats every about 165 days. Timing and spectral analysis were performed
simultaneously in the energy band 0.4-78 keV. A spin period of 187.0 +/- 0.4 s
was measured, consistent with previous observations performed in 2007. The
X-ray intensity shows a large variability (more than one order of magnitude) on
timescales longer than the spin period, with several luminous X-ray flares
which repeat every 2-2.5 ks, some of which simultaneously observed by both
satellites. The broad-band (0.4-78 keV) time-averaged spectrum was well
deconvolved with a double-component model (a blackbody plus a power-law with a
high energy cutoff) together with a weak iron line in emission at 6.4 keV
(equivalent width, EW, of 40+/-10 eV). Alternatively, a partial covering model
also resulted in an adequate description of the data. The source time-averaged
X-ray luminosity was 1E36 erg/s (0.1-100 keV; assuming 7 kpc). We discuss the
results of these observations in the framework of the different models proposed
to explain SFXTs, supporting a quasi-spherical settling accretion regime,
although alternative possibilities (e.g. centrifugal barrier) cannot be ruled
out.Comment: 13 pages, 11 figures, accepted for publication on The Astrophysical
Journa
Multiple cyclotron line-forming regions in GX 301-2
We present two observations of the high-mass X-ray binary GX 301-2 with
NuSTAR, taken at different orbital phases and different luminosities. We find
that the continuum is well described by typical phenomenological models, like a
very strongly absorbed NPEX model. However, for a statistically acceptable
description of the hard X-ray spectrum we require two cyclotron resonant
scattering features (CRSF), one at ~35 keV and the other at ~50 keV. Even
though both features strongly overlap, the good resolution and sensitivity of
NuSTAR allows us to disentangle them at >=99.9% significance. This is the first
time that two CRSFs are seen in GX 301-2. We find that the CRSFs are very
likely independently formed, as their energies are not harmonically related
and, if it were a single line, the deviation from a Gaussian shape would be
very large. We compare our results to archival Suzaku data and find that our
model also provides a good fit to those data. We study the behavior of the
continuum as well as the CRSF parameters as function of pulse phase in seven
phase bins. We find that the energy of the 35 keV CRSF varies smoothly as
function of phase, between 30-38 keV. To explain this variation, we apply a
simple model of the accretion column, taking the altitude of the line-forming
region, the velocity of the in-falling material, and the resulting relativistic
effects into account. We find that in this model the observed energy variation
can be explained simply due to a variation of the projected velocity and
beaming factor of the line forming region towards us.Comment: 18 pages, 10 figures, accepted for publication in A&
XMM-Newton Finds That SAX J1750.8-2900 May Harbor the Hottest, Most Luminous Known Neutron Star
We have performed the first sensitive X-ray observation of the low-mass X-ray
binary SAX J1750.8-2900 in quiescence with XMM-Newton. The spectrum was fit to
both a classical black body model, and a non-magnetized, pure hydrogen neutron
star atmosphere model. A power law component was added to these models, but we
found that it was not required by the fits. The distance to SAX J1750.8-2900 is
known to be D = 6.79 kpc from a previous analysis of photospheric radius
expansion bursts. This distance implies a bolometric luminosity (as given by
the NS atmosphere model) of (1.05 +/- 0.12) x 10^34 (D/6.79 kpc)^2 erg s^-1,
which is the highest known luminosity for a NS LMXB in quiescence. One simple
explanation for this surprising result could be that the crust and core of the
NS were not in thermal equilibrium during the observation. We argue that this
was likely not the case, and that the core temperature of the NS in SAX
J1750.8-2900 is unusually high
Estimate of the impact of background particles on the X-Ray Microcalorimeter Spectrometer on IXO
We present the results of a study on the impact of particles of galactic
(GCR) and solar origin for the X-ray Microcalorimeter Spectrometer (XMS) aboard
an astronomical satellite flying in an orbit at the second Lagrangian point
(L2). The detailed configuration presented in this paper is the one adopted for
the International X-Ray Observatory (IXO) study, however the derived estimates
can be considered a conservative limit for ATHENA, that is the IXO redefined
mission proposed to ESA. This work is aimed at the estimate of the residual
background level expected on the focal plane detector during the mission
lifetime, a crucial information in the development of any instrumental
configuration that optimizes the XMS scientific performances. We used the
Geant4 toolkit, a Monte Carlo based simulator, to investigate the rejection
efficiency of the anticoincidence system and assess the residual background on
the detector.Comment: 18 pages, 9 figure
The SXI telescope on board EXIST: scientific performances
The SXI telescope is one of the three instruments on board EXIST, a
multiwavelength observatory in charge of performing a global survey of the sky
in hard X-rays searching for Supermassive Black Holes. One of the primary
objectives of EXIST is also to study with unprecedented sensitivity the most
unknown high energy sources in the Universe, like high redshift GRBs, which
will be pointed promptly by the Spacecraft by autonomous trigger based on hard
X-ray localization on board. The recent addition of a soft X-ray telescope to
the EXIST payload complement, with an effective area of ~950 cm2 in the energy
band 0.2-3 keV and extended response up to 10 keV will allow to make broadband
studies from 0.1 to 600 keV. In particular, investigations of the spectra
components and states of AGNs and monitoring of variability of sources, study
of the prompt and afterglow emission of GRBs since the early phases, which will
help to constrain the emission models and finally, help the identification of
sources in the EXIST hard X-ray survey and the characterization of the
transient events detected. SXI will also perform surveys: a scanning survey
with sky coverage of about 2pi and limiting flux of 5x10^{-14}cgs plus other
serendipitous. We give an overview of the SXI scientific performance and also
describe the status of its design emphasizing how it has been derived by the
scientific requirements.Comment: 9 pages, 6 figures, to be published in Proc. of SPIE, vol 7435-11,
200
The Proposed High Energy Telescope (HET) for EXIST
The hard X-ray sky now being studied by INTEGRAL and Swift and soon by NuSTAR
is rich with energetic phenomena and highly variable non-thermal phenomena on a
broad range of timescales. The High Energy Telescope (HET) on the proposed
Energetic X-ray Imaging Survey Telescope (EXIST) mission will repeatedly survey
the full sky for rare and luminous hard X-ray phenomena at unprecedented
sensitivities. It will detect and localize (<20", at 5 sigma threshold) X-ray
sources quickly for immediate followup identification by two other onboard
telescopes - the Soft X-ray imager (SXI) and Optical/Infrared Telescope (IRT).
The large array (4.5 m^2) of imaging (0.6 mm pixel) CZT detectors in the HET, a
coded-aperture telescope, will provide unprecedented high sensitivity (~0.06
mCrab Full Sky in a 2 year continuous scanning survey) in the 5 - 600 keV band.
The large field of view (90 deg x 70 deg) and zenith scanning with
alternating-orbital nodding motion planned for the first 2 years of the mission
will enable nearly continuous monitoring of the full sky. A 3y followup pointed
mission phase provides deep UV-Optical-IR-Soft X-ray and Hard X-ray imaging and
spectroscopy for thousands of sources discovered in the Survey. We review the
HET design concept and report the recent progress of the CZT detector
development, which is underway through a series of balloon-borne wide-field
hard X-ray telescope experiments, ProtoEXIST. We carried out a successful
flight of the first generation of fine pixel large area CZT detectors
(ProtoEXIST1) on Oct 9, 2009. We also summarize our future plan (ProtoEXIST2 &
3) for the technology development needed for the HET.Comment: 10 pages, 13 figures, 2 tables, SPIE Conference "Astronomical
Telescopes and Instrumentation 2010"; to appear in Proceedings SPIE (2010
- …