3 research outputs found

    Superconducting nanowire photon number resolving detector at telecom wavelength

    Full text link
    The optical-to-electrical conversion, which is the basis of optical detectors, can be linear or nonlinear. When high sensitivities are needed single-photon detectors (SPDs) are used, which operate in a strongly nonlinear mode, their response being independent of the photon number. Nevertheless, photon-number resolving (PNR) detectors are needed, particularly in quantum optics, where n-photon states are routinely produced. In quantum communication, the PNR functionality is key to many protocols for establishing, swapping and measuring entanglement, and can be used to detect photon-number-splitting attacks. A linear detector with single-photon sensitivity can also be used for measuring a temporal waveform at extremely low light levels, e.g. in long-distance optical communications, fluorescence spectroscopy, optical time-domain reflectometry. We demonstrate here a PNR detector based on parallel superconducting nanowires and capable of counting up to 4 photons at telecommunication wavelengths, with ultralow dark count rate and high counting frequency

    telecommunication wavelengths

    No full text
    Optical-to-electrical conversion, which is the basis of the operation of optical detectors, can be linear or nonlinear. When high sensitivities are needed, single-photon detectors are used, which operate in a strongly nonlinear mode, their response being independent of the number of detected photons. However, photon-number-resolving detectors are needed, particularly in quantum optics, where n-photon states are routinely produced. In quantum communication and quantum information processing, the photon-numberresolving functionality is key to many protocols, such as the implementation of quantum repeaters 1 and linear-optics quantum computing 2. A linear detector with single-photon sensitivity can also be used for measuring a temporal waveform at extremely low light levels, such as in longdistance optical communications, fluorescence spectroscop
    corecore