2 research outputs found

    Multislice computerized tomography coronary angiography can be a comparable tool to intravascular ultrasound in evaluating “true” coronary artery bifurcations

    Get PDF
    AimCoronary bifurcation atherosclerosis depends on its angles, flow, and extensive branching. We investigate the ability of CT coronary angiography (CTCA) to determine atherosclerotic plaque characteristics of “true” bifurcation compared with intravascular ultrasound (IVUS) and the influence on side branch (SB) fate after percutaneous coronary intervention (PCI).Methods and resultsThe study included 70 patients with 72 “true” bifurcations. Most of the bifurcations were in the left anterior descending—diagonal (Dg) territory [50 out of 72 (69.4%)]. Longitudinal plaque evaluation at the polygon of confluence [carina and 5 mm proximal and distal in the main branch (MB)] showed that carina side MB and SB plaque had occurred with the lowest incidence with fibro-lipid structure (115 ± 63 HU and 89 ± 73 HU, p < 0.001 for all). Bland–Altman analysis showed a discrepancy in measuring mainly the lumen area between CTCA and IVUS in proximal MB [lumen 5.10, 95% CI (95% confidence interval, 4.53–5.68) mm2, p < 0.001; vessel −1.42, 95% CI (−2.63 to −0.21) mm2, p = 0.023], carina MB [lumen 3.74, 95% CI (3.37–4.10) mm2, p < 0.001; vessel −0.48, 95% CI (−1.45 to 0.48) mm2, p = 0.322], and distal MB [lumen 4.72, 95% CI (4.27–5.18) mm2, p < 0.001; vessel 0.62, 95% CI (−0.53 to 1.77) mm2, p = 0.283]. A significant correlation existed between average plaque density on CTCA with a percentage of calcified plaque on IVUS tissue characterization (proximal r = 0.307/p = 0.024, carina 0.469/0.008, distal 0.339/0.024, minimal lumen diameter 0.318/0.020). Circumferential plaque in the proximal MB segment remained an independent predictor of SB compromise [OR 3.962 (95% CI 1.170–13.418)].ConclusionDetection and characterization of atherosclerotic plaque by CTCA in non-left main “true” coronary bifurcations can provide useful information about bifurcation anatomy and plaque distribution that can predict outcomes after provisional stenting, thus guiding the interventional strategy to bifurcation PCI

    Calculation of Liquidus Temperature for Aluminum and Magnesium Alloys Applying Method of Equivalency

    Get PDF
    The purpose of this paper is to develop a mathematical equation, which will be able to accurately predict the liquidus temperature of various aluminum and magnesium cast alloys on the basis of their known chemical compositions. An accurate knowledge of liquidus temperature permits a researcher to predict a variety of physical parameters pertaining to a given alloy. The analytical expressions presented in this paper are based on the “method of equivalency.” According to this concept, the influence of any alloying element on the liquidus temperature of an aluminum and/or magnesium alloy can be translated into the equivalent influence of a reference element. Silicon as a reference element has been chosen for aluminum alloys and aluminum for magnesium alloys. The sum of the equivalent concentrations for other elements, when added to the influence of the actual reference element is used to calculate the liquidus temperature of the alloy. The calculated liquidus temperatures for wide ranges of alloy chemical compositions show a good correlation with corresponding measured liquidus temperatures
    corecore