10 research outputs found
Protein Dynamics in Individual Human Cells: Experiment and Theory
A current challenge in biology is to understand the dynamics of protein circuits in living human cells. Can one define and test equations for the dynamics and variability of a protein over time? Here, we address this experimentally and theoretically, by means of accurate time-resolved measurements of endogenously tagged proteins in individual human cells. As a model system, we choose three stable proteins displaying cell-cycle–dependant dynamics. We find that protein accumulation with time per cell is quadratic for proteins with long mRNA life times and approximately linear for a protein with short mRNA lifetime. Both behaviors correspond to a classical model of transcription and translation. A stochastic model, in which genes slowly switch between ON and OFF states, captures measured cell–cell variability. The data suggests, in accordance with the model, that switching to the gene ON state is exponentially distributed and that the cell–cell distribution of protein levels can be approximated by a Gamma distribution throughout the cell cycle. These results suggest that relatively simple models may describe protein dynamics in individual human cells
Recommended from our members
Protein Dynamics in Individual Human Cells: Experiment and Theory
A current challenge in biology is to understand the dynamics of protein circuits in living human cells. Can one define and test equations for the dynamics and variability of a protein over time? Here, we address this experimentally and theoretically, by means of accurate time-resolved measurements of endogenously tagged proteins in individual human cells. As a model system, we choose three stable proteins displaying cell-cycle–dependant dynamics. We find that protein accumulation with time per cell is quadratic for proteins with long mRNA life times and approximately linear for a protein with short mRNA lifetime. Both behaviors correspond to a classical model of transcription and translation. A stochastic model, in which genes slowly switch between ON and OFF states, captures measured cell–cell variability. The data suggests, in accordance with the model, that switching to the gene ON state is exponentially distributed and that the cell–cell distribution of protein levels can be approximated by a Gamma distribution throughout the cell cycle. These results suggest that relatively simple models may describe protein dynamics in individual human cells
Dynamic Proteomics: a database for dynamics and localizations of endogenous fluorescently-tagged proteins in living human cells
Recent advances allow tracking the levels and locations of a thousand proteins in individual living human cells over time using a library of annotated reporter cell clones (LARC). This library was created by Cohen et al. to study the proteome dynamics of a human lung carcinoma cell-line treated with an anti-cancer drug. Here, we report the Dynamic Proteomics database for the proteins studied by Cohen et al. Each cell-line clone in LARC has a protein tagged with yellow fluorescent protein, expressed from its endogenous chromosomal location, under its natural regulation. The Dynamic Proteomics interface facilitates searches for genes of interest, downloads of protein fluorescent movies and alignments of dynamics following drug addition. Each protein in the database is displayed with its annotation, cDNA sequence, fluorescent images and movies obtained by the time-lapse microscopy. The protein dynamics in the database represents a quantitative trace of the protein fluorescence levels in nucleus and cytoplasm produced by image analysis of movies over time. Furthermore, a sequence analysis provides a search and comparison of up to 50 input DNA sequences with all cDNAs in the library. The raw movies may be useful as a benchmark for developing image analysis tools for individual-cell dynamic-proteomics. The database is available at http://www.dynamicproteomics.net/
Generation of a fluorescently labeled endogenous protein library in living human cells
We present a protocol to tag proteins expressed from their endogenous chromosomal locations in individual mammalian cells using central dogma tagging. The protocol can be used to build libraries of cell clones, each expressing one endogenous protein tagged with a fluorophore such as the yellow fluorescent protein. Each round of library generation produces 100–200 cell clones and takes about 1 month. The protocol integrates procedures for high-throughput single-cell cloning using flow cytometry, high-throughput cDNA generation and 3′ rapid amplification of cDNA ends, semi-automatic protein localization screening using fluorescent microscopy and freezing cells in 96-well format
Protein Dynamics in Individual Human Cells: Experiment and Theory
A current challenge in biology is to understand the dynamics of protein circuits in living human cells. Can one define and test equations for the dynamics and variability of a protein over time? Here, we address this experimentally and theoretically, by means of accurate time-resolved measurements of endogenously tagged proteins in individual human cells. As a model system, we choose three stable proteins displaying cell-cycle–dependant dynamics. We find that protein accumulation with time per cell is quadratic for proteins with long mRNA life times and approximately linear for a protein with short mRNA lifetime. Both behaviors correspond to a classical model of transcription and translation. A stochastic model, in which genes slowly switch between ON and OFF states, captures measured cell–cell variability. The data suggests, in accordance with the model, that switching to the gene ON state is exponentially distributed and that the cell–cell distribution of protein levels can be approximated by a Gamma distribution throughout the cell cycle. These results suggest that relatively simple models may describe protein dynamics in individual human cells