11 research outputs found

    Protein Kinase D-Mediated Anterograde Membrane Trafficking Is Required for Fibroblast Motility

    Get PDF
    AbstractBackground: Locomoting cells exhibit a constant retrograde flow of plasma membrane (PM) proteins from the leading edge lamellipodium backward, which when coupled to substrate adhesion, may drive forward cell movement. However, the intracellular source of these PM components and whether their continuous retrograde flow is required for cell motility is unknown.Results: To test the hypothesis that the anterograde secretion pathway supplies PM components for retrograde flow that are required for lamellipodial activity and cell motility, we specifically inhibited transport of cargo from the trans-Golgi network (TGN) to the PM in Swiss 3T3 fibroblasts and monitored cell motility using time-lapse microscopy. TGN-to-PM trafficking was inhibited with a dominant-negative, kinase-dead (kd) mutant of protein kinase D1 (PKD) that specifically blocks budding of secretory vesicles from the TGN and does not affect other transport pathways. Inhibition of PKD on the TGN inhibited directed cell motility and retrograde flow of surface markers and filamentous actin, while inhibition of PKD elsewhere in the cell neither blocked anterograde membrane transport nor cell motile functions. Exogenous activation of Rac1 in PKD-kd-expressing cells restored lamellipodial dynamics independent of membrane traffic. However, lamellipodial activity was delocalized from a single leading edge, and directed cell motility was not fully recovered.Conclusions: These results indicate that PKD-mediated anterograde membrane traffic from the TGN to the PM is required for fibroblast locomotion and localized Rac1-dependent leading edge activity. We suggest that polarized secretion transmits cargo that directs localized signaling for persistent leading edge activity necessary for directional migration

    Alanine-scanning mutagenesis of Aspergillus γ-tubulin yields diverse and novel phenotypes

    Get PDF
    This is the publisher's version, also available electronically from "www.molbiolcell.org".We have created 41 clustered charged-to-alanine scanning mutations of the mipA, γ-tubulin, gene of Aspergillus nidulans and have created strains carrying these mutations by two-step gene replacement and by a new procedure, heterokaryon gene replacement. Most mutant alleles confer a wild-type phenotype, but others are lethal or conditionally lethal. The conditionally lethal alleles exhibit a variety of phenotypes under restrictive conditions. Most have robust but highly abnormal mitotic spindles and some have abnormal cytoplasmic microtubule arrays. Two alleles appear to have reduced amounts of γ-tubulin at the spindle pole bodies and nucleation of spindle microtubule assembly may be partially inhibited. One allele inhibits germ tube formation. The cold sensitivity of two alleles is strongly suppressed by the antimicrotubule agents benomyl and nocodazole and a third allele is essentially dependent on these compounds for growth. Together our data indicate that γ-tubulin probably carries out functions essential to mitosis and organization of cytoplasmic microtubules in addition to its well-documented role in microtubule nucleation. We have also placed our mutations on a model of the structure of γ-tubulin and these data give a good initial indication of the functionally important regions of the molecule

    Detection and Characterization of Circulating Tumour Cells in Multiple Myeloma

    Get PDF
    Multiple myeloma (MM) remains an incurable disease despite recent therapeutic improvements. The ability to detect and characterize MM circulating tumour cells (CTCs) in peripheral blood provides an alternative to replace or augment invasive bone marrow (BM) biopsies with a simple blood draw, providing real-time, clinically relevant information leading to improved disease management and therapy selection. Here we have developed and qualified an enrichment-free, cell-based immunofluorescence MM CTC assay that utilizes an automated digital pathology algorithm to distinguish MM CTCs from white blood cells (WBCs) on the basis of CD138 and CD45 expression levels, as well as a number of morphological parameters. These MM CTCs were further characterized for expression of phospho-ribosomal protein S6 (pS6) as a readout for PI3K/AKT pathway activation. Clinical feasibility of the assay was established by testing blood samples from a small cohort of patients, where we detected populations of both CD138pos and CD138neg MM CTCs. In this study, we developed an immunofluorescent cell-based assay to detect and characterize CTCs in MM

    γ-Tubulin and the C-terminal motor domain kinesin-like protein, KLPA, function in the establishment of spindle bipolarity in Aspergillus nidulans

    No full text
    This is the publisher's version, also available electronically from "http://www.citationmachine.net".Previous research has found that a γ-tubulin mutation inSchizosaccharomyces pombe is synthetically lethal with a deletion of the C-terminal motor domain kinesin-like protein genepkl1, but the lethality of the double mutant prevents a phenotypic analysis of the synthetic interaction. We have investigated interactions between klpA1, a deletion of an Aspergillus nidulans homolog of pkl1, and mutations in the mipA, γ-tubulin gene. We find that klpA1 dramatically increases the cold sensitivity and slightly reduces the growth rate at all temperatures, of threemipA alleles. In synchronized cells we find thatklpA1 causes a substantial but transient inhibition of the establishment of spindle bipolarity. At a restrictive temperature,mipAD123 causes a slight, transient inhibition of spindle bipolarity and a more significant inhibition of anaphase A. In the mipAD123/klpA1 strain, formation of bipolar spindles is more strongly inhibited than in theklpA1 single mutant and many spindles apparently never become bipolar. These results indicate, surprisingly, that γ-tubulin and the klpA kinesin have overlapping roles in the establishment of spindle bipolarity. We propose a model to account for these data

    γ-Tubulin and the C-Terminal Motor Domain Kinesin-like Protein, KLPA, Function in the Establishment of Spindle Bipolarity in Aspergillus nidulans

    No full text
    Previous research has found that a γ-tubulin mutation in Schizosaccharomyces pombe is synthetically lethal with a deletion of the C-terminal motor domain kinesin-like protein gene pkl1, but the lethality of the double mutant prevents a phenotypic analysis of the synthetic interaction. We have investigated interactions between klpA1, a deletion of an Aspergillus nidulans homolog of pkl1, and mutations in the mipA, γ-tubulin gene. We find that klpA1 dramatically increases the cold sensitivity and slightly reduces the growth rate at all temperatures, of three mipA alleles. In synchronized cells we find that klpA1 causes a substantial but transient inhibition of the establishment of spindle bipolarity. At a restrictive temperature, mipAD123 causes a slight, transient inhibition of spindle bipolarity and a more significant inhibition of anaphase A. In the mipAD123/klpA1 strain, formation of bipolar spindles is more strongly inhibited than in the klpA1 single mutant and many spindles apparently never become bipolar. These results indicate, surprisingly, that γ-tubulin and the klpA kinesin have overlapping roles in the establishment of spindle bipolarity. We propose a model to account for these data

    Amphiphilic suramin dissolves Matrigel, causing an \u27inhibition\u27 artefact within in vitro angiogenesis assays.

    No full text
    The field of study concerning promotion and/or inhibition of angiogenesis has gathered much attention in the scientific community. A great deal of work has been invested towards defining reproducible assays to gauge for promotion or inhibition of angiogenesis in response to drug treatments or growth conditions. Two common components of these assays were noted by our group to have an unexpected and previously unreported interaction. Suramin is a commercially available compound, commonly used as a positive control for in vitro angiogenic inhibition assays. Matrigel is a popular extracellular substrate that supports angiogenic network formation when endothelial cells are cultured on its surface. However, our group demonstrated that suramin alone (without the presence of cells) will actively dissolve Matrigel, causing the extracellular matrix to transition from the gel-like physical state to a more liquid state. This causes cells on the Matrigel to congregate and sink to the bottom of the well. Therefore, previous observations of inhibition of endothelial cell angiogenesis through the incubation with suramin (including previous observations made by our group) are, largely, an artefact caused by suramin and matrix interaction rather than suramin and cells interaction, as previously reported. Our results suggest that the presence of sulphate groups and amphiphilic properties of suramin are likely responsible for the disruption of the matrix layer. We believe that this information is of prime importance to anyone using similar in vitro models, or employing suramin in any therapy or drug development assays

    γ-Tubulin Plays an Essential Role in the Coordination of Mitotic Events

    No full text
    Recent data from multiple organisms indicate that γ-tubulin has essential, but incompletely defined, functions in addition to nucleating microtubule assembly. To investigate these functions, we examined the phenotype of mipAD159, a cold-sensitive allele of the γ-tubulin gene of Aspergillus nidulans. Immunofluorescence microscopy of synchronized material revealed that at a restrictive temperature mipAD159 does not inhibit mitotic spindle formation. Anaphase A was inhibited in many nuclei, however, and after a slight delay in mitosis (∼6% of the cell cycle period), most nuclei reentered interphase without dividing. In vivo observations of chromosomes at a restrictive temperature revealed that mipAD159 caused a failure of the coordination of late mitotic events (anaphase A, anaphase B, and chromosomal disjunction) and nuclei reentered interphase quickly even though mitosis was not completed successfully. Time-lapse microscopy also revealed that transient mitotic spindle abnormalities, in particular bent spindles, were more prevalent in mipAD159 strains than in controls. In experiments in which microtubules were depolymerized with benomyl, mipAD159 nuclei exited mitosis significantly more quickly (as judged by chromosomal condensation) than nuclei in a control strain. These data reveal that γ-tubulin has an essential role in the coordination of late mitotic events, and a microtubule-independent function in mitotic checkpoint control

    Characterization of a novel angiogenic model based on stable, fluorescently labelled endothelial cell lines amenable to scale-up for high content screening.

    No full text
    BACKGROUND: Blood vessel formation is important for many physiological and pathological processes and is therefore a critical target for drug development. Inhibiting angiogenesis to starve a tumour or promoting \u27normalization\u27 of tumour vasculature in order to facilitate delivery of anticancer drugs are both areas of active research. Recapitulation of vessel formation by human cells in vitro allows the investigation of cell-cell and cell-matrix interactions in a controlled environment and is therefore a crucial step in developing HCS (high content screening) and HTS (high throughput screening) assays to search for modulators of blood vessel formation. HUVECs (human umbilical-vein endothelial cells) exemplify primary cells used in angiogenesis assays. However, primary cells have significant limitations that include phenotypic decay and/or senescence by six to eight passages in culture, making stable integration of fluorescent markers and large-scale expansion for HTS problematic. To overcome these limitations for HTS, we developed a novel angiogenic model system that employs stable fluorescent endothelial cell lines based on immortalized HMECs (human microvascular endothelial cell). We then evaluated HMEC cultures, both alone and co-cultured with an EMC (epicardial mesothelial cell) line that contributes vascular smooth muscle cells, to determine the suitability for HTS or HCS. RESULTS: The endothelial and epicardial lines were engineered to express a panel of nuclear- and cytoplasm-localized fluorescent proteins to be mixed and matched to suit particular experimental goals. HMECs retained their angiogenic potential and stably expressed fluorescent proteins for at least 13 passages after transduction. Within 8 h after plating on Matrigel, the cells migrated and coalesced into networks of vessel-like structures. If co-cultured with EMCs, the branches formed cylindrical-shaped structures of HMECs surrounded by EMC derivatives reminiscent of vessels. Network formation measurements revealed responsiveness to media composition and control compounds. CONCLUSIONS: HMEC-based lines retain most of the angiogenic features of primary endothelial cells and yet possess long-term stability and ease of culture, making them intriguing candidates for large-scale primary HCS and HTS (of ~10000-1000000 molecules). Furthermore, inclusion of EMCs demonstrates the feasibility of using epicardial-derived cells, which normally contribute to smooth muscle, to model large vessel formation. In summary, the immortalized fluorescent HMEC and EMC lines and straightforward culture conditions will enable assay development for HCS of angiogenesis
    corecore