58 research outputs found

    Solar irradiance models and measurements: a comparison in the 220 nm to 240 nm wavelength band

    Full text link
    Solar irradiance models that assume solar irradiance variations to be due to changes in the solar surface magnetic flux have been successfully used to reconstruct total solar irradiance on rotational as well as cyclical and secular time scales. Modelling spectral solar irradiance is not yet as advanced, and also suffers from a lack of comparison data, in particular on solar-cycle time scales. Here we compare solar irradiance in the 220 nm to 240 nm band as modelled with SATIRE-S and measured by different instruments on the UARS and SORCE satellites. We find good agreement between the model and measurements on rotational time scales. The long-term trends, however, show significant differences. Both SORCE instruments, in particular, show a much steeper gradient over the decaying part of cycle 23 than the modelled irradiance or that measured by UARS/SUSIM.Comment: 8 pages, 2 figures, conference proceedings to appear in Surveys in Geophysic

    Ca II K spectroheliograms for studies of long-term changes in solar irradiance

    Get PDF
    We address the importance of historical full disc Ca II K spectroheliograms for solar activity and irradiance reconstruction studies. We review our work on processing such data to enable them to be used in irradiance reconstructions. We also present our preliminary estimates of the plage areas from five of the longest available historical Ca II K archives.Comment: 5 pages, 3 figure

    The potential of Ca II K observations for solar activity and variability studies

    Get PDF
    Several observatories around the globe started regular full-disc imaging of the solar atmosphere in the Ca II K line in the early decades of the 20th century. These observations are continued today at a few sites with either old spectroheliographs or modern telescopes equipped with narrow-band filters. The Ca II K time series are unique in representing long-term variations of the Sun's chromospheric magnetic field. However, meaningful results from their analysis require accurate processing of the available data and robust merging of the information stored in different archives. This paper provides an overview of the historical and modern full-disc Ca II K observations, with focus on their quality and the main results obtained from their analysis over the last decade.Comment: 6 pages, 2 figure

    Analysis of full disc Ca II K spectroheliograms. II. Towards an accurate assessment of long-term variations in plage areas

    Full text link
    Reconstructions of past irradiance variations require suitable data on solar activity. The longest direct proxy is the sunspot number, and it has been most widely employed for this purpose. These data, however, only provide information on the surface magnetic field emerging in sunspots, while a suitable proxy of the evolution of the bright magnetic features, specifically faculae/plage and network, is missing. This information can potentially be extracted from the historical full-disc observations in the Ca II K line. We have analysed over 100,000 historical images from 8 digitised photographic archives of the Arcetri, Kodaikanal, McMath-Hulbert, Meudon, Mitaka, Mt Wilson, Schauinsland, and Wendelstein observatories, as well as one archive of modern observations from the Rome/PSPT. The analysed data cover the period 1893--2018. We first performed careful photometric calibration and compensation for the centre-to-limb variation, and then segmented the images to identify plage regions. This has been consistently applied to both historical and modern observations. The plage series derived from different archives are generally in good agreement with each other. However, there are also clear deviations that most likely hint at intrinsic differences in the data and their digitisation. We showed that accurate image processing significantly reduces errors in the plage area estimates. Accurate photometric calibration also allows precise plage identification on images from different archives without the need to arbitrarily adjust the segmentation parameters. Finally, by comparing the plage area series from the various records, we found the conversion laws between them. This allowed us to produce a preliminary composite of the plage areas obtained from all the datasets studied here. This is a first step towards an accurate assessment of the long-term variation of plage regions.Comment: 30 pages, 22 figures, accepted in A&

    Forward modelling of brightness variations in Sun-like stars I. Emergence and surface transport of magnetic flux

    Full text link
    The latitudinal distribution of starspots deviates from the solar pattern with increasing rotation rate. Numerical simulations of magnetic flux emergence and transport can help model the observed stellar activity patterns and the associated brightness variations. We set up a composite model for the processes of flux emergence and transport on Sun-like stars, to simulate stellar brightness variations for various levels of magnetic activity and rotation rates. Assuming that the distribution of magnetic flux at the base of the convection zone follows solar scaling relations, we calculate the emergence latitudes and tilt angles of bipolar regions at the surface for various rotation rates, using thin-flux-tube simulations. Taking these two quantities as input to a surface flux transport SFT model, we simulate the diffusive-advective evolution of the radial field at the stellar surface, including effects of active region nesting. As the rotation rate increases, (1) magnetic flux emerges at higher latitudes and an inactive gap opens around the equator, reaching a half-width of 20∘20^\circ for 8Ω⊙8\Omega_\odot, (2) the tilt angles of freshly emerged bipolar regions show stronger variations with latitude. Polar spots can form at 8Ω⊙8\Omega_\odot by accumulation of follower-polarity flux from decaying bipolar regions. From 4Ω⊙4\Omega_\odot to 8Ω⊙8\Omega_\odot, the maximum spot coverage changes from 3 to 20%, respectively, compared to 0.4% for the solar model. Nesting of activity can lead to strongly non-axisymmetric spot distributions. On Sun-like stars rotating at 8Ω⊙8\Omega_\odot (Prot≃3P_{\rm rot}\simeq 3 days), polar spots can form, owing to higher levels of flux emergence rate and tilt angles. Defining spots by a threshold field strength yields global spot coverages that are roughly consistent with stellar observations.Comment: 16 pages, 13 figures. Astron. & Astrophys. (in press); minor language corrections mad

    Sunspot area catalogue revisited: Daily cross-calibrated areas since 1874

    Full text link
    Long and consistent sunspot area records are important for understanding the long-term solar activity and variability. Multiple observatories around the globe have regularly recorded sunspot areas, but such individual records only cover restricted periods of time. Furthermore, there are also systematic differences between them, so that these records need to be cross-calibrated before they can be reliably used for further studies. We produce a cross-calibrated and homogeneous record of total daily sunspot areas, both projected and corrected, covering the period between 1874 and 2019. A catalogue of calibrated individual group areas is also generated for the same period. We have compared the data from nine archives: Royal Greenwich Observatory (RGO), Kislovodsk, Pulkovo, Debrecen, Kodaikanal, Solar Optical Observing Network (SOON), Rome, Catania, and Yunnan Observatories, covering the period between 1874 and 2019. Mutual comparisons of the individual records have been employed to produce homogeneous and inter-calibrated records of daily projected and corrected areas. As in earlier studies, the basis of the composite is formed by the data from RGO. After 1976, the only datasets used are those from Kislovodsk, Pulkovo and Debrecen observatories. This choice was made based on the temporal coverage and the quality of the data. In contrast to the SOON data used in previous area composites for the post-RGO period, the properties of the data from Kislovodsk and Pulkovo are very similar to those from the RGO series. They also directly overlap the RGO data in time, which makes their cross-calibration with RGO much more reliable. We have also computed and provide the daily Photometric Sunspot Index (PSI) widely used, e.g., in empirical reconstructions of solar irradiance.Comment: Accepted for publication in Astronomy and Astrophysics. An additional file (animation) is available at https://www.dropbox.com/s/armawopcxt8kmb9/Mandal_2020_butterfly_diagram.zip?dl=

    Long-term changes in solar activity and irradiance

    Full text link
    The Sun is the main energy source to Earth, and understanding its variability is of direct relevance to climate studies. Measurements of total solar irradiance exist since 1978, but this is too short compared to climate-relevant time scales. Coming from a number of different instruments, these measurements require a cross-calibration, which is not straightforward, and thus several composite records have been created. All of them suggest a marginally decreasing trend since 1996. Most composites also feature a weak decrease over the entire period of observations, which is also seen in observations of the solar surface magnetic field and is further supported by Ca II K data. Some inconsistencies, however, remain and overall the magnitude and even the presence of the long-term trend remain uncertain. Different models have been developed, which are used to understand the irradiance variability over the satellite period and to extend the records of solar irradiance back in time. Differing in their methodologies, all models require proxies of solar magnetic activity as input. The most widely used proxies are sunspot records and cosmogenic isotope data on centennial and millennial time scale, respectively. None of this, however, offers a sufficiently good, independent description of the long-term evolution of faculae and network responsible for solar brightening. This leads to uncertainty in the amplitude of the long-term changes in solar irradiance. Here we review recent efforts to improve irradiance reconstructions on time scales longer than the solar cycle and to reduce the existing uncertainty in the magnitude of the long-term variability. In particular, we highlight the potential of using 3D magnetohydrodynamical simulations of the solar atmosphere as input to more physical irradiance models and of historical full-disc Ca II K observations encrypting direct facular information back to 1892.Comment: 17 pages, 8 figures, accepted for publication in JAST

    A new SATIRE-S spectral solar irradiance reconstruction for solar cycles 21--23 and its implications for stratospheric ozone

    Get PDF
    We present a revised and extended total and spectral solar irradiance (SSI) reconstruction, which includes a wavelength-dependent uncertainty estimate, spanning the last three solar cycles using the SATIRE-S model. The SSI reconstruction covers wavelengths between 115 and 160,000 nm and all dates between August 1974 and October 2009. This represents the first full-wavelength SATIRE-S reconstruction to cover the last three solar cycles without data gaps and with an uncertainty estimate. SATIRE-S is compared with the NRLSSI model and SORCE/SOLSTICE ultraviolet (UV) observations. SATIRE-S displays similar cycle behaviour to NRLSSI for wavelengths below 242 nm and almost twice the variability between 242 and 310 nm. During the decline of last solar cycle, between 2003 and 2008, SSI from SORCE/SOLSTICE version 12 and 10 typically displays more than three times the variability of SATIRE-S between 200 and 300 nm. All three datasets are used to model changes in stratospheric ozone within a 2D atmospheric model for a decline from high solar activity to solar minimum. The different flux changes result in different modelled ozone trends. Using NRLSSI leads to a decline in mesospheric ozone, while SATIRE-S and SORCE/SOLSTICE result in an increase. Recent publications have highlighted increases in mesospheric ozone when considering version 10 SORCE/SOLSTICE irradiances. The recalibrated SORCE/SOLSTICE version 12 irradiances result in a much smaller mesospheric ozone response than when using version 10 and now similar in magnitude to SATIRE-S. This shows that current knowledge of variations in spectral irradiance is not sufficient to warrant robust conclusions concerning the impact of solar variability on the atmosphere and climate.Comment: 25 pages (18 pages in main article with 6 figures; 7 pages in supplementary materials with 6 figures) in draft mode using the American Meteorological Society package. Submitted to Journal of Atmospheric Sciences for publicatio

    Recovering the unsigned photospheric magnetic field from Ca II K observations

    Get PDF
    We reassess the relationship between the photospheric magnetic field strength and the Ca II K intensity for a variety of surface features as a function of the position on the disc and the solar activity level. This relationship can be used to recover the unsigned photospheric magnetic field from images recorded in the core of Ca II K line. We have analysed 131 pairs of high-quality, full-disc, near-co-temporal observations from SDO/HMI and Rome/PSPT spanning half a solar cycle. To analytically describe the observationally-determined relation, we considered three different functions: a power law with an offset, a logarithmic function, and a power law function of the logarithm of the magnetic flux density. We used the obtained relations to reconstruct maps of the line-of-sight component of the unsigned magnetic field (unsigned magnetograms) from Ca II K observations, which were then compared to the original magnetograms. We find that both power-law functions represent the data well, while the logarithmic function is good only for quiet periods. We see no significant variation over the solar cycle or over the disc in the derived fit parameters, independently of the function used. We find that errors in the independent variable, usually not accounted for, introduce attenuation bias. To address this, we binned the data with respect to the magnetic field strength and Ca II K contrast separately and derived the relation for the bisector of the two binned curves. The reconstructed unsigned magnetograms show good agreement with the original ones. RMS differences are less than 90 G. The results were unaffected by the stray-light correction of the SDO/HMI and Rome/PSPT data. Our results imply that Ca~II~K observations, accurately processed and calibrated, can be used to reconstruct unsigned magnetograms by using the relations derived in our study.Comment: 18 pages, 22 figures, accepted in A&
    • …
    corecore