5 research outputs found

    Stiffness of Lipid Monolayers with Phase Coexistence

    No full text
    The surface dilational modulusor compressibility modulushas been previously studied for monolayers composed of pure materials, where a jump in this modulus was related with the onset of percolation as a result of the establishment of a connected structure at the molecular level. In this work, we focused on monolayers composed of two components of low lateral miscibility. Our aim was to investigate the compressibility of mixed monolayers at pressures and compositions in the two-phase region of the phase diagram, in order to analyze the effect of the mechanical properties of each phase on the stiffness of the composite. In nine different systems with distinct molecular dipoles and charges, the stiffness of each phase and the texture at the plane of the monolayer were studied. In this way, we were able to analyze the general compressibility of two-phase lipid monolayers, regardless of the properties of their constituent parts. The results are discussed in the light of the following two hypotheses: first, the stiffness of the composite could be dominated by the stiffness of each phase as a weighted sum according to the percentage of each phase area, regardless of the distribution of the phases in the plane of the monolayer. Alternatively, the stiffness of the composite could be dominated by the mechanical properties of the continuous phase. Our results were better explained by this latter proposal, as in all the analyzed mixtures it was found that the mechanical properties of the percolating phase were the determining factors. The value of the compression modulus was closer to the value of the connected phase than to that of the dispersed phase, indicating that the bidimensional composites displayed mechanical properties that were related to the properties of each phases in a rather complex manner

    Inter-Domain Interactions in Charged Lipid Monolayers

    No full text
    Phase coexistence is common in model biomembranes with the presence of domains formed by lipids in a dense phase state modulating lateral diffusion of species through hydrodynamic and electrostatic interactions. In this study, interdomain interactions in monolayers of charged surfactants were analyzed and compared with neutral systems. Interactions were investigated at different interdomain distances and by varying the ionic strength (<i>I</i>) of the subphase. At low percentages of condensed area (%Ac), i.e., high interdomain distances, domains were approximated as point charges or dipoles, and a comparison between the simulated and experimental results was made. At high %Ac, domains were arranged in a distorted hexagonal lattice, and the energy of a domain around its equilibrium position in the lattice was modeled using a harmonic potential and the spring constant determined. On subphases of high <i>I</i>, charged domains interacted in a manner similar to neutral domains with domain motion being precluded at high percentages of condensed area. At low <i>I</i>, a higher interdomain repulsion was observed along with a lower domain motion and, therefore, a higher apparent viscosity at comparable %Ac. Interestingly, this effect was observed at conditions where the Debye–Hückel length was still 2 orders lower than the interdomain distances

    Inter-Domain Interactions in Charged Lipid Monolayers

    No full text
    Phase coexistence is common in model biomembranes with the presence of domains formed by lipids in a dense phase state modulating lateral diffusion of species through hydrodynamic and electrostatic interactions. In this study, interdomain interactions in monolayers of charged surfactants were analyzed and compared with neutral systems. Interactions were investigated at different interdomain distances and by varying the ionic strength (<i>I</i>) of the subphase. At low percentages of condensed area (%Ac), i.e., high interdomain distances, domains were approximated as point charges or dipoles, and a comparison between the simulated and experimental results was made. At high %Ac, domains were arranged in a distorted hexagonal lattice, and the energy of a domain around its equilibrium position in the lattice was modeled using a harmonic potential and the spring constant determined. On subphases of high <i>I</i>, charged domains interacted in a manner similar to neutral domains with domain motion being precluded at high percentages of condensed area. At low <i>I</i>, a higher interdomain repulsion was observed along with a lower domain motion and, therefore, a higher apparent viscosity at comparable %Ac. Interestingly, this effect was observed at conditions where the Debye–Hückel length was still 2 orders lower than the interdomain distances

    Surface Behavior of Sphingomyelins with Very Long Chain Polyunsaturated Fatty Acids and Effects of Their Conversion to Ceramides

    No full text
    Molecular species of sphingomyelin (SM) with nonhydroxy (n) and 2-hydroxy (h) very long chain polyunsaturated fatty acids (n- and h-28:4, 30:5, and 32:5) abound in rat spermatogenic cells and spermatozoa. These SMs are located on the sperm head, where they are converted to the corresponding ceramides (Cer) after the completion of the acrosomal reaction, as induced in vitro. The aim of this study was to look into the surface properties of these unique SM species and how these properties change by the SM → Cer conversion. After isolation by HPLC, these SMs were organized in Langmuir films and studied alone, in combination with different proportions of Cer, and during their conversion to Cer by sphingomyelinase. Compression isotherms for all six SMs under study were compatible with a liquid-expanded (LE) state and showed large molecular areas. Only the longest SMs (n-32:5 and h-32:5 SM) underwent a phase transition upon cooling. Interestingly, the abundant h-28:4 Cer exhibited a highly compressible liquid-condensed (LC) phase compatible with a high conformational freedom of Cer molecules but with the characteristic low diffusional properties of the LC phase. In mixed films of h-28:4 SM/h-28:4 Cer, the components showed favorable mixing in the LE phase. The monolayer exhibited h-28:4 Cer-rich domains both in premixed films and when formed by the action of sphingomyelinase on pure h-28:4 SM films. Whereas the SMs from sperm behaved in a way similar to that of shorter acylated SMs, the corresponding Cers showed atypical rheological properties that may be relevant to the membrane structural rearrangements that take place on the sperm head after the completion of the acrosomal reaction

    The Rheological Properties of Lipid Monolayers Modulate the Incorporation of l‑Ascorbic Acid Alkyl Esters

    Get PDF
    In this work, we tested the hypothesis that the incorporation of amphiphilic drugs into lipid membranes may be regulated by their rheological properties. For this purpose, two members of the l-ascorbic acid alkyl esters family (ASC<sub><i>n</i></sub>) were selected, ASC<sub>16</sub> and ASC<sub>14</sub>, which have different rheological properties when organized at the air/water interface. They are lipophilic forms of vitamin C used in topical pharmacological preparations. The effect of the phase state of the host lipid membranes on ASC<sub><i>n</i></sub> incorporation was explored using Langmuir monolayers. Films of pure lipids with known phase states have been selected, showing liquid-expanded, liquid-condensed, and solid phases as well as pure cholesterol films in liquid-ordered state. We also tested ternary and quaternary mixed films that mimic the properties of cholesterol containing membranes and of the stratum corneum. The compressibility and shear properties of those monolayers were assessed in order to define its phase character. We found that the length of the acyl chain of the ASC<sub><i>n</i></sub> compounds induces differential changes in the rheological properties of the host membrane and subtly regulates the kinetics and extent of the penetration process. The capacity for ASC<sub><i>n</i></sub> uptake was found to depend on the phase state of the host film. The increase in surface pressure resultant after amphiphile incorporation appears to be a function of the capacity of the host membrane to incorporate such amphiphile as well as the rheological response of the film. Hence, monolayers that show a solid phase state responded with a larger surface pressure increase to the incorporation of a comparable amount of amphiphile than liquid-expanded ones. The cholesterol-containing films, including the mixture that mimics stratum corneum, allowed a very scarce ASC<sub><i>n</i></sub> uptake independently of the membrane diffusional properties. This suggests an important contribution of Cho on the maintenance of the barrier function of stratum corneum
    corecore