8 research outputs found

    Heavy Metals, Their Phytotoxicity, and the Role of Phenolic Antioxidants in Plant Stress Responses with Focus on Cadmium: Review

    No full text
    The current state of heavy metal (HM) environmental pollution problems was considered in the review: the effects of HMs on the vital activity of plants and the functioning of their antioxidant system, including phenolic antioxidants. The latter performs an important function in the distribution and binding of metals, as well as HM detoxification in the plant organism. Much attention was focused on cadmium (Cd) ions as one of the most toxic elements for plants. The data on the accumulation of HMs, including Cd in the soil, the entry into plants, and the effect on their various physiological and biochemical processes (photosynthesis, respiration, transpiration, and water regime) were analyzed. Some aspects of HMs, including Cd, inactivation in plant tissues, and cell compartments, are considered, as well as the functioning of various metabolic pathways at the stage of the stress reaction of plant cells under the action of pollutants. The data on the effect of HMs on the antioxidant system of plants, the accumulation of low molecular weight phenolic bioantioxidants, and their role as ligand inactivators were summarized. The issues of polyphenol biosynthesis regulation under cadmium stress were considered. Understanding the physiological and biochemical role of low molecular antioxidants of phenolic nature under metal-induced stress is important in assessing the effect/aftereffect of Cd on various plant objects—the producers of these secondary metabolites are widely used for the health saving of the world’s population. This review reflects the latest achievements in the field of studying the influence of HMs, including Cd, on various physiological and biochemical processes of the plant organism and enriches our knowledge about the multifunctional role of polyphenols, as one of the most common secondary metabolites, in the formation of plant resistance and adaptation

    Influence of Different Precursors on Content of Polyphenols in <i>Camellia sinensis</i> In Vitro Callus Culture

    No full text
    Plant tissue cultures are considered as potential producers of biologically active plant metabolites, which include various phenolic compounds that can be used to maintain human health. Moreover, in most cases, their accumulation is lower than in the original explants, which requires the search for factors and influences for the intensification of this process. In this case, it is very promising to use the precursors of their biosynthesis as potential “regulators” of the various metabolites’ formation. The purpose of our research was to study the effect of L-phenylalanine (PhA, 3 mM), trans-cinnamic acid (CA, 1 mM) and naringenin (NG, 0.5 mM), as components of various stages of phenolic metabolism, on accumulation of various phenolic compound classes, including phenylpropanoids, flavans and proanthocyanidins, as well as the content of malondialdehyde in in vitro callus culture of the tea plant (Camellia sinensis L.). According to the data obtained, the precursors’ influence did not lead to changes in the morphology and water content of the cultures. At the same time, an increase in the total content of phenolic compounds, as well as phenylpropanoids, flavans and proanthocyanidins, was noted in tea callus cultures. Effectiveness of precursor action depends on its characteristics and the exposure duration, and was more pronounced in the treatments with PhA. This compound can be considered as the most effective precursor regulating phenolic metabolism, contributing to a twofold increase in the total content of phenolic compounds, flavanes and proanthocyanidins, and a fourfold increase in phenylpropanoids in tea callus cultures

    Influence of Different Precursors on Content of Polyphenols in Camellia sinensis In Vitro Callus Culture

    No full text
    Plant tissue cultures are considered as potential producers of biologically active plant metabolites, which include various phenolic compounds that can be used to maintain human health. Moreover, in most cases, their accumulation is lower than in the original explants, which requires the search for factors and influences for the intensification of this process. In this case, it is very promising to use the precursors of their biosynthesis as potential &ldquo;regulators&rdquo; of the various metabolites&rsquo; formation. The purpose of our research was to study the effect of L-phenylalanine (PhA, 3 mM), trans-cinnamic acid (CA, 1 mM) and naringenin (NG, 0.5 mM), as components of various stages of phenolic metabolism, on accumulation of various phenolic compound classes, including phenylpropanoids, flavans and proanthocyanidins, as well as the content of malondialdehyde in in vitro callus culture of the tea plant (Camellia sinensis L.). According to the data obtained, the precursors&rsquo; influence did not lead to changes in the morphology and water content of the cultures. At the same time, an increase in the total content of phenolic compounds, as well as phenylpropanoids, flavans and proanthocyanidins, was noted in tea callus cultures. Effectiveness of precursor action depends on its characteristics and the exposure duration, and was more pronounced in the treatments with PhA. This compound can be considered as the most effective precursor regulating phenolic metabolism, contributing to a twofold increase in the total content of phenolic compounds, flavanes and proanthocyanidins, and a fourfold increase in phenylpropanoids in tea callus cultures

    Polyphenols in Plants: Structure, Biosynthesis, Abiotic Stress Regulation, and Practical Applications (Review)

    No full text
    Phenolic compounds or polyphenols are among the most common compounds of secondary metabolism in plants. Their biosynthesis is characteristic of all plant cells and is carried out with the participation of the shikimate and acetate-malonate pathways. In this case, polyphenols of various structures are formed, such as phenylpropanoids, flavonoids, and various oligomeric and polymeric compounds of phenolic nature. Their number already exceeds 10,000. The diversity of phenolics affects their biological activity and functional role. Most of their representatives are characterized by interaction with reactive oxygen species, which manifests itself not only in plants but also in the human body, where they enter through food chains. Having a high biological activity, phenolic compounds are successfully used as medicines and nutritional supplements for the health of the population. The accumulation and biosynthesis of polyphenols in plants depend on many factors, including physiological–biochemical, molecular–genetic, and environmental factors. In the review, we present the latest literature data on the structure of various classes of phenolic compounds, their antioxidant activity, and their biosynthesis, including their molecular genetic aspects (genes and transfactors). Since plants grow with significant environmental changes on the planet, their response to the action of abiotic factors (light, UV radiation, temperature, and heavy metals) at the level of accumulation and composition of these secondary metabolites, as well as their metabolic regulation, is considered. Information is given about plant polyphenols as important and necessary components of functional nutrition and pharmaceutically valuable substances for the health of the population. Proposals on promising areas of research and development in the field of plant polyphenols are presented

    Effects of Hydrogen Peroxide on In Vitro Cultures of Tea (Camellia sinensis L.) Grown in the Dark and in the Light: Morphology, Content of Malondialdehyde, and Accumulation of Various Polyphenols

    No full text
    Tea plants (Camellia sinensis L.) are phenol-accumulating crops that are widely used for public health. The healing effect of tea leaf products is due to the biosynthesis of such phenolic compounds (PCs) as flavans, which have P-vitamin capillary-strengthening activity. Due to their limited habitat and the value of their specialized metabolites of a phenolic nature, a promising approach is to establish in vitro cultures from them that retain the ability to form PCs, which is characteristic of ex vivo tea plants. The aim of this study was to investigate the effect of exogenic H2O2 (0.01 mM; 0.1 mM; 1 mM) on the growth, morphology, degree of stress response, and accumulation of various phenolic compounds in tea plant callus cultures of different ages (24 or 36 days) grown under different cultivation conditions (darkness or light). According to the results obtained, the H2O2 effect on tea callus cultures of different ages did not cause changes in their morphophysiological characteristics, both after 2 h of exposure (rapid response of callus culture, RRCC) and after 48 h (delayed response of callus culture, DRCC). The determination of the malondialdehyde (MDA) content, which serves as an indicator of changes in the level of lipid peroxidation (LPO) and the presence of stress responses in plant cells, indicated either its maintenance at the control level, a decrease, or an increase. All these effects depended on the growth conditions of the tea callus cultures (darkness or light), their age, the duration of exposure (rapid or delayed response), and the H2O2 concentration. Similar trends were noted for the total content of PCs as well as the amount of flavans, proanthocyanidins (soluble and insoluble forms), and lignin. The plant cell responses reflected changes in its adaptation programs, when specialized metabolites act as a target for the action of H2O2, thereby contributing to an increase in their resistance

    Response of Transgenic Potato Plants Expressing Heterologous Genes of ∆9- or ∆12-Acyl-lipid Desaturases to <i>Phytophthora infestans</i> Infection

    No full text
    Late blight is one of the most economically important diseases affecting potato and causing a significant loss in yield. The development of transgenic potato plants with enhanced resistance to infection by Phytophthora infestans may represent a possible approach to solving this issue. A comparative study of the leaf response in control potato plants (S.tuberosum L. cultivar Skoroplodnyi), control transgenic plants expressing the reporter gene of thermostable lichenase (transgenic licBM3 line) and transgenic plants expressing cyanobacterial hybrid genes ∆9-acyl-lipid desaturase (transgenic desC lines) and ∆12-acyl-lipid desaturase (transgenic desA lines) to infection with P. infestans has been performed. The expression of desaturase genes in potato plants enhanced their tolerance to potato late blight agents as compared with the control. The lipid peroxidation level raised in the leaves of the control and transgenic desA plants on third day after inoculation with P. infestans zoospores and remained the same in the transgenic desC plants. The number of total phenolic compounds was increased as early as on the second day after infection in all studied variants and continued to remain the same, except for transgenic desC plants. Accumulation of flavonoids, the main components of the potato leaf phenolic complex, raised on the second day in all studied variants, remained unchanged on the third day in the control plants and decreased in most transgenic plants expressing desaturase genes. The results obtained in our study demonstrate that the expression of genes of Δ9- and Δ12-acyl-lipid desaturases in potato plants enhanced their resistance to P. infestans as compared with the control non-transgenic plants due to concomitant accumulation of phenolic compounds, including flavonoids, in the leaves. All these changes were more pronounced in transgenic desC plants, which indicates that the Δ9-acyllipid desaturase gene appears to be a potential inducer of the production of biological antioxidants in plant cells

    Heterologous <i>codA</i> Gene Expression Leads to Mitigation of Salt Stress Effects and Modulates Developmental Processes

    No full text
    Transgenic tobacco plants overexpressing the choline oxidase gene from A. globiformis showed an increase in resistance at the level of primary and secondary biosynthesis of metabolites, removing the damage characteristic of salinity and stabilizing the condition of plants. We used 200 mM NaCl, which inhibits the growth of tobacco plants at all stages of development. Leaves of transgenic and wild-type (WT) plants Nicotiána tabácum were used for biochemical, cytological and molecular biological analysis. However, for transgenic lines cultivated under normal conditions (without salinity), we noted juvenile characteristics, delay in flowering, and slowing down of development, including the photosynthetic apparatus. This caused changes in the amount of chlorophyll, a delay in the plastid grana development with the preservation of prolamellar bodies. It also caused changes in the amount of sugars and indirectly downstream processes. A significant change in the activity of antioxidant enzymes and a change in metabolism is probably compensated by the regulation of a number of genes, the expression level of which was also changed. Thus, the tolerance of transgenic tobacco plants to salinity, which manifested itself as a result of the constitutive expression of codA, demonstrates an advantage over WT plants, but in the absence of salinity, transgenic plants did not have such advantages due to juvenilization

    From Dimness to Glossiness—Characteristics of the Spring Rapeseed Mutant Form without Glaucous Bloom (Brassica napus L.)

    No full text
    As a result of the treatment of &ldquo;Vikros&rdquo; spring canola with the chemical mutagen ethyl methanesulfonate (EMS), a high-protein mutant form without glaucous bloom (wax bloom) on leaves, shoots, and siliques was isolated. Segregation into glossy and glaucous forms was always observed in the progeny of glossy plants from self-pollination, and the proportion of glaucous plants could reach up to 25%. The progeny of glaucous plants were homogeneous and did not segregate. If during the period of seed germination and seedling development the soil did not dry out and remained moist, and the average daily temperature did not exceed 16 &deg;C, then the amount of glossy plants could reach 99%. Glossy plants possessed qualities valuable for breeding forage varieties, such as the increased content of protein in seeds (more than 30%), and change phenol metabolism, чтo прoявляется a reduced amount of lignin and sinapine in comparison with the original cultivar. In addition, plants without wax coating showed weakened shoot growth, decreased pollen fertility and seed production, and reduced lignin content in the shoots. Glossy mutants are of interest for the obtaining of fodder low-sinapine and low-lignin varieties of spring rapeseed
    corecore