5 research outputs found
Microbiome Responses to an Uncontrolled Short-Term Diet Intervention in the Frame of the Citizen Science Project
Personalized nutrition is of increasing interest to individuals actively monitoring their health. The relations between the duration of diet intervention and the effects on gut microbiota have yet to be elucidated. Here we examined the associations of short-term dietary changes, long-term dietary habits and lifestyle with gut microbiota. Stool samples from 248 citizen-science volunteers were collected before and after a self-reported 2-week personalized diet intervention, then analyzed using 16S rRNA sequencing. Considerable correlations between long-term dietary habits and gut community structure were detected. A higher intake of vegetables and fruits was associated with increased levels of butyrate-producing Clostridiales and higher community richness. A paired comparison of the metagenomes before and after the 2-week intervention showed that even a brief, uncontrolled intervention produced profound changes in community structure: resulting in decreased levels of Bacteroidaceae, Porphyromonadaceae and Rikenellaceae families and decreased alpha-diversity coupled with an increase of Methanobrevibacter, Bifidobacterium, Clostridium and butyrate-producing Lachnospiraceae- as well as the prevalence of a permatype (a bootstrapping-based variation of enterotype) associated with a higher diversity of diet. The response of microbiota to the intervention was dependent on the initial microbiota state. These findings pave the way for the development of an individualized diet.</p
Genetic Predisposition to Schizophrenia and Depressive Disorder Comorbidity
Background: Patients with schizophrenia have an increased risk of depressive disorders compared to the general population. The comorbidity between schizophrenia and depression suggests a potential coincidence of the pathophysiology and/or genetic predictors of these mental disorders. The aim of this study was to review the potential genetic predictors of schizophrenia and depression comorbidity. Materials and Methods: We carried out research and analysis of publications in the databases PubMed, Springer, Wiley Online Library, Taylor & Francis Online, Science Direct, and eLIBRARY.RU using keywords and their combinations. The search depth was the last 10 years (2010–2020). Full-text original articles, reviews, meta-analyses, and clinical observations were analyzed. A total of 459 articles were found, of which 45 articles corresponding to the purpose of this study were analyzed in this topic review. Results: Overlap in the symptoms and genetic predictors between these disorders suggests that a common etiological mechanism may underlie the presentation of comorbid depression in schizophrenia. The molecular mechanisms linking schizophrenia and depression are polygenic. The most studied candidate genes are GRIN1, GPM6A, SEPTIN4, TPH1, TPH2, CACNA1C, CACNB2, and BCL9. Conclusion: Planning and conducting genome-wide and associative genetic studies of the comorbid conditions under consideration in psychiatry is important for the development of biological and clinical predictors and a personalized therapy strategy for schizophrenia. However, it should be recognized that the problems of predictive and personalized psychiatry in the diagnosis and treatment of schizophrenia and comorbid disorders are far from being resolved
PREDICTIVE MODELING OF MECHANICAL PROPERTIES OF METAL FILLED ANODIC ALUMINUM OXIDE
Filling dielectric porous matrices, particularly anodic aluminum oxide, with metal confers a promising solution for nanocomposite creation. In this regard, the problem of estimating and predicting the physical and mechanical properties of such materials is of prime importance. The present work focuses on the numerical modeling of the effective and ultimate stress-strain (under compression) characteristics of nanocomposites based on anodic aluminum oxide with unidirectional filamentary pores filled with different metals (In, Sn, and Zn). The dependences of the tensor components of the effective elastic moduli, coefficients of elastic anisotropy (in different directions), and compression strength (along the nanowires) on the structure parameters and the concentration of nanowires are investigated
Cultivation of Cells in a Physiological Plasmax Medium Increases Mitochondrial Respiratory Capacity and Reduces Replication Levels of RNA Viruses
Changes in metabolic pathways are often associated with the development of various pathologies including cancer, inflammatory diseases, obesity and metabolic syndrome. Identification of the particular metabolic events that are dysregulated may yield strategies for pharmacologic intervention. However, such studies are hampered by the use of classic cell media that do not reflect the metabolite composition that exists in blood plasma and which cause non-physiological adaptations in cultured cells. In recent years two groups presented media that aim to reflect the composition of human plasma, namely human plasma-like medium (HPLM) and Plasmax. Here we describe that, in four different mammalian cell lines, Plasmax enhances mitochondrial respiration. This is associated with the formation of vast mitochondrial networks and enhanced production of reactive oxygen species (ROS). Interestingly, cells cultivated in Plasmax displayed significantly less lysosomes than when any standard media were used. Finally, cells cultivated in Plasmax support replication of various RNA viruses, such as hepatitis C virus (HCV) influenza A virus (IAV), severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) and several others, albeit at lower levels and with delayed kinetics. In conclusion, studies of metabolism in the context of viral infections, especially those concerning mitochondria, lysosomes, or redox systems, should be performed in Plasmax medium
Diagnostic value of islet autoantibody assays practised in Russia. 1. Classic immunofluorescence islet cell antibody assay, immunoradiometric glutamic acid decarboxylase antibody assay, and ELISA tyrosine phosphatase antibody and insulin antibody assays
Objective. To estimate performance characteristics and diagnostic value of immunofluorescent islet cell antibody (ICA) assay, immunoradiometric glutamic acid decarboxylase antibody (GADA) assay, and ELISA tyrosine phosphatase IA-2 antibody (IA-2A) and insulin antibody (IA) assays.
Research Design and Methods. Antibodies were tested in 438 children and adolescents with newly diagnosed diabetes mellitus (DM) type 1, and in 891 subjects without DM type 1. ICA were determined by the classic indirect immunofluorescent method recommended by the Juvenile Diabetes Foundation International, GADA were determined with the Immunotech IRMA Anti-GAD kit, and IA-2A and IA were determined with Medizym Anti-IA2 and Orgentec Anti-Insulin ELISA kits, respectively. Sensitivity (Se), specificity (Sp), positive predictive value (PPV) and negative predictive value (NPV) of the tests were estimated with contingency tables. Diagnostic accuracy was estimated from areas under receiver operating curves (AUC).
Results. ICA test was of the greatest diagnostic value (Se=88%, Sp=96%, PPV=96%, NPV=94%, AUC=0,94), followed by IA-2A (Se=66%, Sp=98%, PPV=98%, NPV=59%, AUC=0,82) and GADA (Se=73%, Sp=84%, PPV=75%, NPV=83%, AUC=0,79). IA test exhibited a very low Se (4,3%) and lacked diagnostic accuracy (AUC=0,5).
Conclusions. We recommend to use ICA, IA-2A and GADA tests surveyed in our study for diagnosis of DM type 1 and differential diagnosis of DM. We don’t recommend IA testing with an Orgentec Anti-Insulin ELISA kit for usage in clinical practice