3 research outputs found

    Preliminary Study on the Effect of a Single High-Energy Electromagnetic Pulse on Morphology and Free Radical Generation in Human Mesenchymal Stem Cells

    Full text link
    The effect of nanosecond electromagnetic pulses on human health, and especially on forming free radicals in human cells, is the subject of continuous research and ongoing discussion. This work presents a preliminary study on the effect of a single high-energy electromagnetic pulse on morphology, viability, and free radical generation in human mesenchymal stem cells (hMSC). The cells were exposed to a single electromagnetic pulse with an electric field magnitude of ~1 MV/m and a pulse duration of ~120 ns generated from a 600 kV Marx generator. The cell viability and morphology at 2 h and 24 h after exposure were examined using confocal fluorescent microscopy and scanning electron microscopy (SEM), respectively. The number of free radicals was investigated with electron paramagnetic resonance (EPR). The microscopic observations and EPR measurements showed that the exposure to the high-energy electromagnetic pulse influenced neither the number of free radicals generated nor the morphology of hMSC in vitro compared to control samples

    Hydrogen Production via the Oxy-Steam Reforming of LNG or Methane on Ni Catalysts

    Full text link
    Ni catalysts supported on ZrO2, 5%CeO2-ZrO2, and 5%La2O3-ZrO2 were prepared via the impregnation method and tested in the oxy-steam reforming of methane and liquified natural gas (LNG). All tested catalysts exhibited high catalytic activity in the studied process at 700 and 900 °C. The improvement of the stability of Ni catalysts after the addition of CeO2 oxide in the studied oxy-steam reforming of LNG process was confirmed. In addition, high activity and selectivity towards hydrogen was proven in the oxy-steam reforming process at 900 °C over a 20%Ni/5%CeO2-ZrO2 catalyst. It was also proved that the addition of CeO2 onto a ZrO2 carrier leads to a decrease in the NiO and metallic Ni crystallite sizes that were detected by the X-Ray diffraction (XRD) technique. The solid solution formation between NiO and ZrO2 and/or NiO and CeO2 was proved. Superior reactivity in the oxy-steam reforming of CH4 and the LNG process exhibited a 20%Ni/ZrO2 catalyst, which showed the highest methane conversions at 500 and 600 °C, equal to 63% and 89%, respectively. In addition, also in the case of the LNG reforming reaction, the most active catalyst was the 20%Ni/ZrO2 system, which demonstrated 46.3% and 76.9% of the methane conversion value at 500 and 600 °C and the total conversion of others hydrocarbons (ethane, propane and butane). In addition, this catalytic system exhibited the highest selectivity towards hydrogen formation in the oxy-steam reforming of the LNG reaction equal to 71.2% and 71.3% at 500 and 600 °C, respectively. The highest activity of this system can be explained by the uniform distributions of Ni species and their highest concentration compared to the rest of the monometallic Ni catalysts. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) results also confirmed a strong interaction of NiO with ZrO2 in the case of the 20%Ni/ZrO2 catalysts. The presence of selected NiZrO+ ions emitted from the investigated surface of the 20%Ni/ZrO2 system was detected

    Nanosecond Pulsed Electric Field Only Transiently Affects the Cellular and Molecular Processes of Leydig Cells

    Full text link
    The purpose of this study was to verify whether the nanosecond pulsed electric field, not eliciting thermal effects, permanently changes the molecular processes and gene expression of Leydig TM3 cells. The cells were exposed to a moderate electric field (80 quasi-rectangular shape pulses, 60 ns pulse width, and an electric field of 14 kV/cm). The putative disturbances were recorded over 24 h. After exposure to the nanosecond pulsed electric field, a 19% increase in cell diameter, a loss of microvilli, and a 70% reduction in cell adhesion were observed. Some cells showed the nonapoptotic externalization of phosphatidylserine through the pores in the plasma membrane. The cell proportion in the subG1 phase increased by 8% at the expense of the S and G2/M phases, and the DNA was fragmented in a small proportion of the cells. The membrane mitochondrial potential and superoxide content decreased by 37% and 23%, respectively. Microarray’s transcriptome analysis demonstrated a negative transient effect on the expression of genes involved in oxidative phosphorylation, DNA repair, cell proliferation, and the overexpression of plasma membrane proteins. We conclude that nanosecond pulsed electric field affected the physiology and gene expression of TM3 cells transiently, with a noticeable heterogeneity of cellular responses
    corecore