21 research outputs found

    Commercial articulated collaborative in situ 3D bioprinter for skin wound healing

    Get PDF
    In situ bioprinting is one of the most clinically relevant techniques in the emerging bioprinting technology because it could be performed directly on the human body in the operating room and it does not require bioreactors for post-printing tissue maturation. However, commercial in situ bioprinters are still not available on the market. In this study, we demonstrated the benefit of the originally developed first commercial articulated collaborative in situ bioprinter for the treatment of full-thickness wounds in rat and porcine models. We used an articulated and collaborative robotic arm from company KUKA and developed original printhead and correspondence software enabling in situ bioprinting on curve and moving surfaces. The results of in vitro and in vivo experiments show that in situ bioprinting of bioink induces a strong hydrogel adhesion and enables printing on curved surfaces of wet tissues with a high level of fidelity. The in situ bioprinter was convenient to use in the operating room. Additional in vitro experiments (in vitro collagen contraction assay and in vitro 3D angiogenesis assay) and histological analyses demonstrated that in situ bioprinting improves the quality of wound healing in rat and porcine skin wounds. The absence of interference with the normal process of wound healing and even certain improvement in the dynamics of this process strongly suggests that in situ bioprinting could be used as a novel therapeutic modality in wound healing.publishersversionPeer reviewe

    The first study on analysis of the codon usage bias and evolutionary analysis of the glycoprotein envelope E2 gene of seven Pestiviruses

    Get PDF
    Background and Aim: Pestivirus, a genus of the Flaviviridae family, comprises viruses that affect bovines, sheep, and pigs. Symptoms, including hemorrhagic syndromes, abortion, respiratory complications, and deadly mucosal diseases, are produced in infected animals, which cause huge economic losses to the farmers. Bovine viral diarrhea virus-1, bovine viral diarrhea virus-2, classical swine fever virus, border disease virus, Bungowannah, Hobi-like, and atypical porcine pestivirus belonging to the Pestivirus genus were selected for the study. This study aimed to estimate the codon usage bias and the rate of evolution using the glycoprotein E2 gene. Furthermore, codon usage bias analysis was performed using publicly available nucleotide sequences of the E2 gene of all seven Pestiviruses. These nucleotide sequences might elucidate the disease epidemiology and facilitate the development of designing better vaccines. Materials and Methods: Coding sequences of the E2 gene of Pestiviruses A (n = 89), B (n = 60), C (n = 75), D (n = 10), F (n = 07), H (n = 52), and K (n = 85) were included in this study. They were analyzed using different methods to estimate the codon usage bias and evolution. In addition, the maximum likelihood and Bayesian methodologies were employed to analyze a molecular dataset of seven Pestiviruses using a complete E2 gene region. Results: The combined analysis of codon usage bias and evolutionary rate analysis revealed that the Pestiviruses A, B, C, D, F, H, and K have a codon usage bias in which mutation and natural selection have played vital roles. Furthermore, while the effective number of codons values revealed a moderate bias, neutrality plots indicated the natural selection in A, B, F, and H Pestiviruses and mutational pressure in C, D, and K Pestiviruses. The correspondence analysis revealed that axis-1 significantly contributes to the synonymous codon usage pattern. In this study, the evolutionary rate of Pestiviruses B, H, and K was very high. The most recent common ancestors of all Pestivirus lineages are 1997, 1975, 1946, 1990, 2004, 1990, and 1990 for Pestiviruses A, B, C, D, F, H, and K, respectively. This study confirms that both mutational pressure and natural selection have played a significant role in codon usage bias and evolutionary studies. Conclusion: This study provides insight into the codon usage bias and evolutionary lineages of pestiviruses. It is arguably the first report of such kind. The information provided by the study can be further used to elucidate the respective host adaptation strategies of the viruses. In turn, this information helps study the epidemiology and control methods of pestiviruses

    Zinc oxide nanoparticles prepared through microbial mediated synthesis for therapeutic applications: a possible alternative for plants

    Get PDF
    Zinc oxide nanoparticles (ZnO-NPs) synthesized through biogenic methods have gained significant attention due to their unique properties and potential applications in various biological fields. Unlike chemical and physical approaches that may lead to environmental pollution, biogenic synthesis offers a greener alternative, minimizing hazardous environmental impacts. During biogenic synthesis, metabolites present in the biotic sources (like plants and microbes) serve as bio-reductants and bio-stabilizers. Among the biotic sources, microbes have emerged as a promising option for ZnO-NPs synthesis due to their numerous advantages, such as being environmentally friendly, non-toxic, biodegradable, and biocompatible. Various microbes like bacteria, actinomycetes, fungi, and yeast can be employed to synthesize ZnO-NPs. The synthesis can occur either intracellularly, within the microbial cells, or extracellularly, using proteins, enzymes, and other biomolecules secreted by the microbes. The main key advantage of biogenic synthesis is manipulating the reaction conditions to optimize the preferred shape and size of the ZnO-NPs. This control over the synthesis process allows tailoring the NPs for specific applications in various fields, including medicine, agriculture, environmental remediation, and more. Some potential applications include drug delivery systems, antibacterial agents, bioimaging, biosensors, and nano-fertilizers for improved crop growth. While the green synthesis of ZnO-NPs through microbes offers numerous benefits, it is essential to assess their toxicological effects, a critical aspect that requires thorough investigation to ensure their safe use in various applications. Overall, the presented review highlights the mechanism of biogenic synthesis of ZnO-NPs using microbes and their exploration of potential applications while emphasizing the importance of studying their toxicological effects to ensure a viable and environmentally friendly green strategy

    Equilibrium among Inflammatory Factors Determines Human MSC-Mediated Immunosuppressive Effect

    No full text
    Mesenchymal stem cells (MSCs) are thought to be a promising therapeutic agent due to their multiple paracrine and immunomodulatory properties, providing protection from chronic inflammation and promoting tissue repair. MSCs can regulate the balance of pro-inflammatory and anti-inflammatory factors in inflamed tissues, creating a microenvironment necessary for successful healing; however, their interactions with immune cells are still poorly studied. We examined the temporal and spatial changes in gene regulation and the paracrine milieu accompanying the MSC-mediated immunosuppression effect in mixed cultures with activated peripheral blood mononuclear cells (PBMCs). Our data reveal that the peak of suppression of PBMC proliferation was achieved within 48 h following co-culture with MSCs and subsequently did not undergo a significant change. This effect was accompanied by an increase in COX-2 expression and an induction of IDO synthesis in MSCs. At this point, the expression of IL-1, IL-6, IL-8, IFN-γ, MCP-1, and G-CSF was upregulated in co-cultured cells. On the contrary, we observed a decrease in the concentrations of IL-10, IL-13, IL-5, and MIP-1b in co-culture supernatants compared to intact cultures of activated PBMCs. The regulation of IDO, IL-1, IL-6, and G-CSF production was accomplished with the involvement of direct cell–cell contact between MSCs and PBMCs. These findings provide new insights into the use of potential precondition inducers or their combinations to obtain functionally qualified MSCs for more effective treatment of inflammatory diseases

    Instrumental Assessment of the Face Skin Aging in Women

    No full text
    The aim of this study is to conduct several non-invasive methods for assessing the level of circulatory disturbance, elasticity and aging of skin in patients of different age groups in order to expand the diagnostic capabilities and evaluate the effectiveness of current research in aesthetic medicine. Clinical and instrumental exploration of 160 women aged 17 to 75 years with varying degrees of involutional skin changes was carried out. To objectify the assessment of skin condition, in all group of patients modern instrumental methods were used, such as: elastometry, ultrasound examination of the skin, laser Doppler flowmetry, transcutaneous oxygen tension. Concurrent implementation of several non-invasive methods for assessing the level of circulatory disturbance, elasticity and aging of the skin, allowed us to find new possibilities for studying the functional state of the skin. These methods extend the possibilities of ultrasonic research methods used today in aesthetic cosmetology. The obtained comparative data of elastometry, ultrasonography, laser Doppler flowmetry and transcutaneous oximetry in patients of different age groups showed the presence of elasticity and structure defect, skin thickness and subcutaneous fat, as well as microcirculation changes since 25 years and marked changes after 40 years

    Multifunctional and Smart Wound Dressings—A Review on Recent Research Advancements in Skin Regenerative Medicine

    No full text
    The healing of wounds is a dynamic function that necessitates coordination among multiple cell types and an optimal extracellular milieu. Much of the research focused on finding new techniques to improve and manage dermal injuries, chronic injuries, burn injuries, and sepsis, which are frequent medical concerns. A new research strategy involves developing multifunctional dressings to aid innate healing and combat numerous issues that trouble incompletely healed injuries, such as extreme inflammation, ischemic damage, scarring, and wound infection. Natural origin-based compounds offer distinct characteristics, such as excellent biocompatibility, cost-effectiveness, and low toxicity. Researchers have developed biopolymer-based wound dressings with drugs, biomacromolecules, and cells that are cytocompatible, hemostatic, initiate skin rejuvenation and rapid healing, and possess anti-inflammatory and antimicrobial activity. The main goal would be to mimic characteristics of fetal tissue regeneration in the adult healing phase, including complete hair and glandular restoration without delay or scarring. Emerging treatments based on biomaterials, nanoparticles, and biomimetic proteases have the keys to improving wound care and will be a vital addition to the therapeutic toolkit for slow-healing wounds. This study focuses on recent discoveries of several dressings that have undergone extensive pre-clinical development or are now undergoing fundamental research

    Prognostic Value of Histological and Immunohistochemical Data in Diabetic Foot Ulcers

    No full text
    Diabetic foot ulcers are an extremely urgent medical and social problem throughout the world. The purpose of this study was to analyse the histological and immunohistochemical features of tissues and cells of different sections of wounds taken during the primary surgical treatment of chronic wounds in patients with diabetic foot syndrome with favourable and unfavourable outcomes. Material and methods. A clinical prospective observational study of the treatment outcomes of fifty-three patients with diabetic foot ulcers hospitalized twice in one specialized centre over the course of the year was conducted. The analysis of histological and immunohistochemical data of the tissues of the edges and the centre of the ulcer taken during the primary surgical treatment was performed. While performing histological analyses of wound tissues, special attention was given to the determination of cellular characteristics of leukocyte-necrotic masses, granulation tissue, and loose and dense connective tissue. Immunohistochemistry was performed using a set of monoclonal antibodies, allowing verification of neutrophilic leukocytes, fibroblasts, and endothelial cells. Results. Unfavourable outcomes (amputation, reamputation, death from cardiovascular diseases, nonhealing ulcer within a year) were registered in 52.8% of cases. Uniform distribution of neutrophils and endothelial cell fibroblasts in all parts of the wound was recorded in patients with a favourable outcome. An unfavourable outcome was predetermined by the uneven content of these cells with a significant increase in neutrophilic leukocytosis in the bottom of the wounds, as well as a significant decrease in the number of fibroblasts and endotheliocytes in the centre of the wounds. Conclusions: The datasets obtained during primary surgical treatment are extremely informative to predict the outcome of the treatment of diabetic foot ulcers and indicate more active surgical strategies with the potential to reduce the treatment time, increase its effectiveness, and eventually make the treatment cost-effective

    Antimicrobial Activity of Citrate-Coated Cerium Oxide Nanoparticles

    No full text
    The purpose of this study was to investigate the antimicrobial activity of citrate-stabilized sols of cerium oxide nanoparticles at different concentrations via different microbiological methods and to compare the effect with the peroxidase activity of nanoceria for the subsequent development of a regeneration-stimulating medical and/or veterinary wound-healing product providing new types of antimicrobial action. The object of this study was cerium oxide nanoparticles synthesized from aqueous solutions of cerium (III) nitrate hexahydrate and citric acid (the size of the nanoparticles was 3–5 nm, and their aggregates were 60–130 nm). Nanoceria oxide sols with a wide range of concentrations (10−1–10−6 M) as well as powder (the dry substance) were used. Both bacterial and fungal strains (Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Proteus vulgaris, Candida albicans, Aspergillus brasielensis) were used for the microbiological studies. The antimicrobial activity of nanoceria was investigated across a wide range of concentrations using three methods sequentially; the antimicrobial activity was studied by examining diffusion into agar, the serial dilution method was used to detect the minimum inhibitory and bactericidal concentrations, and, finally, gas chromatography with mass-selective detection was performed to study the inhibition of E. coli’s growth. To study the redox activity of different concentrations of nanocerium, we studied the intensity of chemiluminescence in the oxidation reaction of luminol in the presence of hydrogen peroxide. As a result of this study’s use of the agar diffusion and serial dilution methods followed by sowing, no significant evidence of antimicrobial activity was found. At the same time, in the current study of antimicrobial activity against E. coli strains using gas chromatography with mass spectrometry, the ability of nanoceria to significantly inhibit the growth and reproduction of microorganisms after 24 h and, in particular, after 48 h of incubation at a wide range of concentrations, 10−2–10−5 M (48–95% reduction in the number of microbes with a significant dose-dependent effect) was determined as the optimum concentration. A reliable redox activity of nanoceria coated with citrate was established, increasing in proportion to the concentration, confirming the oxidative mechanism of the action of nanoceria. Thus, nanoceria have a dose-dependent bacteriostatic effect, which is most pronounced at concentrations of 10−2–10−3 M. Unlike the effects of classical antiseptics, the effect was manifested from 2 days and increased during the observation. To study the antimicrobial activity of nanomaterials, it is advisable not to use classical qualitative and semi-quantitative methods; rather, the employment of more accurate quantitative methods is advised, in particular, gas chromatography–mass spectrometry, during several days of incubation

    Assessment of antimicrobial and anthelmintic activity of silver nanoparticles bio-synthesized from Viscum orientale leaf extract

    No full text
    Abstract Background Viscum orientale is a largely used parasitic plant with traditional medicinal properties. They are considered to possess the medicinal properties of host tree which they grow on. It’s a least explored plant with ethanopharmacological importance. As a result, the current work aimed to investigate the biological effects of Viscum orientale extract and silver nanoparticles (AgNPs) generated from it. Methods AgNPs synthesized using Viscum orientale plant extract and analysed on time dependent series and was characterized using Ultra Violet UV–visible spectra, Fourier Transform Infrared Spectroscopy FTIR, X-ray diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDX), Scanning Electron Microscopy (SEM). Further using disc method anti-microbial assay was performed following antioxidation screening using 1,1-diphenyl-2-picryl-hydrazyl (DPPH), reducing power and nitric oxide content and heamgglutination with human blood. Results On green synthesis using silver, the phyto contituents of plant Viscum orientale effectively reduced silver ions at 3-4 h of continuous stirring to form AgNPs. UV–vis spectra showed a typical peak of AgNPs at 480 nm. The FTIR analysis confirmed the covering of silver layers to bio-compounds of the extract. SEM analysis represented AgNPs as spherical morphologies ranging from 119–222 nm. AgNPs exhibited impressive zone of inhibition against Escherichia coli (8.1 ± 0.3 mm), Staphylococcus aureus (10.3 ± 0.3 mm), Bacillus subtilis (7.3 ± 0.3 mm), Bacillus cereus (8.2 ± 0.3 mm), Salmonella typhi (7.1 ± 0.2 mm). AgNps exhibited efficiency against DPPH at EC50 value of 57.60 µg/ml. and reducing power at EC50 of 53.42 µg/ml and nitric oxide scavenging of EC50 of 56.01 µg/ml concentration. Further, anthelmintic activity results showed synthesized nanoparticles significant reduction in the paralysis time to 5.4 ± 0.3 min and death time to 6.5 ± 0.6 min in contrast to the individual factors. On hemagglutination using AgNPs, above 80 µg/ml of concentration showed very significant effect on comparison with water extract. Conclusion Synthesized AgNPs using Viscum orientale water extract displayed versatile biological activity than individual extract. This study has forecasted a new path to explore more on this AgNPs for further research

    Novel Benzimidazole Derived Imine Ligand and Its Co(III) and Cu(II) Complexes as Anticancer Agents: Chemical Synthesis, DFT Studies, In Vitro and In Vivo Biological Investigations

    No full text
    The emerging interest in the field of coordination chemistry and their biological applications has created a novel impact in the field of chemical biology. With this motivation, in this work we have synthesized a novel benzimidazole derived imine ligand, 2-((E)-((1H-benzo[d]-2-yl)methylimino)methyl)-4-fluorophenol (HBMF) and its Co(III) and Cu(II) complexes. The metal complexes (C1–C4) were synthesized in 2:1 (HBMF: metal ion) and 1:1:1 (HBMF: metal ion: 1,10-phen) ratios. Structural elucidations of all the synthesized compounds were performed using FT-IR, UV-Visible, NMR, Mass spectroscopy and elemental analysis techniques. A combination of first principles calculations and molecular dynamics simulations was applied to computationally investigate the structural, reactive, and spectroscopic properties of the newly synthesized HBMF ligand and its complexes with copper and cobalt metal ions. Quantum-mechanical calculations in this study were based on the density functional theory (DFT), while molecular dynamics (MD) simulations were based on the OPLS4 force field. The DFT calculations were used to obtain the reactive and spectroscopic properties of the ligand and its complexes, while molecular dynamics (MD) simulations were used to address the ligand’s reactivity with water. Further, the in vitro anti-proliferative activity of the compounds was tested against the A549, Ehrlich–Lettre ascites carcinoma (EAC), SIHA and NIH3T3 cell lines. The biological results depicted that the compound C4, with molecular formula C27H23Cl2CoFN5O3 exhibited profound anti-proliferative activity against the EAC cell line with a significant IC50 value of 10 µm when compared to its parent ligand and other remaining metal complexes under study. Various assays of hematological parameters (alkaline phosphate, creatinine, urea, RBC and WBC) were performed, and significant results were obtained from the experiments. Furthermore, the effect of C4 on neovascularization was evaluated by stimulating the angiogenesis with rVEGF165, which was compared with non-tumor models. The EAC cells were cultured in vivo and administrated with 50 and 75 mg/kg of two doses and tumor parameters were evaluated
    corecore