2 research outputs found

    Insights into non-informative results from non-invasive prenatal screening through gestational age, maternal BMI, and age analyses.

    No full text
    The discovery of cell-free fetal DNA fragments in the maternal plasma initiated a novel testing method in prenatal care, called non-invasive prenatal screening (NIPS). One of the limitations of NIPS is the necessity for a sufficient proportion of fetal fragments in the analyzed circulating DNA mixture (fetal fraction), otherwise, the sample is uninterpretable. We present the effect of gestational age, maternal body mass index (BMI), and maternal age on the fetal fraction (FF) of the sample. We retrospectively analyzed data from 5543 pregnant women with a single male fetus who underwent NIPS from which 189 samples received a repeat testing due to an insufficient FF. We showed the relationship between the failure rate of the samples after the repeated analysis, the FF, and the gestational age at the first sampling. Next, we found that different maternal BMI categories affect the FF and thus the chance of an informative redraw. A better understanding of the factors affecting the FF will reduce the number of non-informative calls from repeated analyzes. In this study, we provide helpful information to clinicians on how to approach non-informative analyses

    Evaluation and limitations of different approaches among COVID-19 fatal cases using whole-exome sequencing data

    No full text
    Abstract Background COVID-19 caused by the SARS-CoV-2 infection may result in various disease symptoms and severity, ranging from asymptomatic, through mildly symptomatic, up to very severe and even fatal cases. Although environmental, clinical, and social factors play important roles in both susceptibility to the SARS-CoV-2 infection and progress of COVID-19 disease, it is becoming evident that both pathogen and host genetic factors are important too. In this study, we report findings from whole-exome sequencing (WES) of 27 individuals who died due to COVID-19, especially focusing on frequencies of DNA variants in genes previously associated with the SARS-CoV-2 infection and the severity of COVID-19. Results We selected the risk DNA variants/alleles or target genes using four different approaches: 1) aggregated GWAS results from the GWAS Catalog; 2) selected publications from PubMed; 3) the aggregated results of the Host Genetics Initiative database; and 4) a commercial DNA variant annotation/interpretation tool providing its own knowledgebase. We divided these variants/genes into those reported to influence the susceptibility to the SARS-CoV-2 infection and those influencing the severity of COVID-19. Based on the above, we compared the frequencies of alleles found in the fatal COVID-19 cases to the frequencies identified in two population control datasets (non-Finnish European population from the gnomAD database and genomic frequencies specific for the Slovak population from our own database). When compared to both control population datasets, our analyses indicated a trend of higher frequencies of severe COVID-19 associated risk alleles among fatal COVID-19 cases. This trend reached statistical significance specifically when using the HGI-derived variant list. We also analysed other approaches to WES data evaluation, demonstrating its utility as well as limitations. Conclusions Although our results proved the likely involvement of host genetic factors pointed out by previous studies looking into severity of COVID-19 disease, careful considerations of the molecular-testing strategies and the evaluated genomic positions may have a strong impact on the utility of genomic testing
    corecore