10 research outputs found

    Predictive risk factors before the onset of familial rheumatoid arthritis: the Tatarstan cohort study

    Get PDF
    BackgroundA familial history of rheumatoid arthritis (RA) predisposes an individual to develop RA. This study aimed at investigating factors associated with this conversion from the Tatarstan cohort.MethodsA total of 144 individuals, referred to as pre-RA and at risk for familial RA, were selected 2 years (range: 2–21 years) before conversion to RA and compared to non-converted 328 first-degree relatives (FDR) from RA as assessed after ≥2 years follow-up, and 355 healthy controls were also selected (HC). Preclinical parameters and socio-demographic/individual/HLA genetic factors were analyzed when data were available at the time of enrollment.ResultsAs compared to FDR and HC groups, pre-RA individuals were characterized before conversion to RA by the presence of arthralgia, severe morning symptoms, a lower educational level, and rural location. An association with the HLA-DRB1 SE risk factor was also retrieved with symmetrical arthralgia and passive smoking. On the contrary, alcohol consumption and childlessness in women were protective and associated with the HLA-DRB1*07:01 locus.ConclusionBefore RA onset, a combination of individual and genetic factors characterized those who are at risk of progressing to RA among those with familial RA relatives

    Fungal, Bacterial, and Archaeal Diversity in the Digestive Tract of Several Beetle Larvae (Coleoptera)

    No full text
    Interpretation of how partnerships between fungi, bacteria, archaea, and insects are maintained through the life of the hosts is a big challenge within the framework of symbiosis research. The main goal of this work was to characterize the gut microbiota in larvae of several Coleoptera species using sequencing of the bacterial and archaeal 16S rRNA genes and fungal internal transcribed spacer (ITS) region. Thus, larvae with various food preferences, including Amphimallon solstitiale, Oryctes nasicornis, Cucujus cinnaberinus, Schizotus pectinicornis, Rhagium mordax, and Rhagium inquisitor, were thoroughly investigated in this work. We revealed an association of these beetle species mainly with four bacterial phyla, Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes, as well as with three fungal phyla, Ascomycota, Zygomycota, and Basidiomycota, but microbial communities varied depending on the beetle host, individual organism, and surrounding environment. Moreover, archaea within the phyla Euryarchaeota and Crenarchaeota in the hindgut content of O. nasicornis and A. solstitiale were additionally detected. The identified microbial communities suggest their potential role in the exploitation of various resources, providing nutritional needs for the host organism. These microorganisms can also represent a valuable source of novel metabolic capacities for their application in different biotechnologies

    Draft genome sequence of Brevibacterium epidermidis EZ-K02 isolated from nitrocellulose-contaminated wastewater environments

    No full text
    Brevibacterium spp. are aerobic, nonbranched, asporogenous, gram-positive, rod-shaped bacteria which may exhibit a rod-coccus cycle when cells get older and can be found in various environments. ​Several Brevibacterium species have industrial importance and are capable of biotransformation of various contaminants. Here we describe the draft genome sequence of Brevibacterium epidermidis EZ-K02 isolated from nitrocellulose-contaminated wastewater environments. The genome comprises 3,885,924 bp, with a G + C content of 64.2%. This whole genome shotgun project has been deposited at DDBJ/ENA/GenBank under the accession PDHL00000000. Keywords: Brevibacterium epidermidis, Draft genome, Wastewate

    Cappable-Seq Reveals Specific Patterns of Metabolism and Virulence for Salmonella Typhimurium Intracellular Survival within Acanthamoeba castellanii

    No full text
    The bacterial pathogen Salmonella enterica, which causes enteritis, has a broad host range and extensive environmental longevity. In water and soil, Salmonella interacts with protozoa and multiplies inside their phagosomes. Although this relationship resembles that between Salmonella and mammalian phagocytes, the interaction mechanisms and bacterial genes involved are unclear. Here, we characterized global gene expression patterns of S. enterica serovar Typhimurium within Acanthamoeba castellanii at the early stage of infection by Cappable-Seq. Gene expression features of S. Typhimurium within A. castellanii were presented with downregulation of glycolysis-related, and upregulation of glyoxylate cycle-related genes. Expression of Salmonella Pathogenicity Island-1 (SPI-1), chemotaxis system, and flagellar apparatus genes was upregulated. Furthermore, expression of genes mediating oxidative stress response and iron uptake was upregulated within A. castellanii as well as within mammalian phagocytes. Hence, global S. Typhimurium gene expression patterns within A. castellanii help better understand the molecular mechanisms of Salmonella adaptation to an amoeba cell and intracellular persistence in protozoa inhabiting water and soil ecosystems

    Comparative Genome Analysis of Two Bacillus pumilus Strains Producing High Level of Extracellular Hydrolases

    No full text
    Whole-genome sequencing of a soil isolate Bacillus pumilus, strain 7P, and its streptomycin-resistant derivative, B. pumilus 3-19, showed genome sizes of 3,609,117 bp and 3,609,444 bp, respectively. Annotation of the genome showed 3794 CDS (3204 with predicted function) and 3746 CDS (3173 with predicted function) in the genome of strains 7P and 3-19, respectively. In the genomes of both strains, the prophage regions Bp1 and Bp2 were identified. These include 52 ORF of prophage proteins in the Bp1 region and 38 prophages ORF in the Bp2 region. Interestingly, more than 50% of Bp1 prophage proteins are similar to the proteins of the phi105 in B. subtilis. The DNA region of Bp2 has 15% similarity to the DNA of the Brevibacillus Jimmer phage. Degradome analysis of the genome of both strains revealed 148 proteases of various classes. These include 60 serine proteases, 48 metalloproteases, 26 cysteine proteases, 4 aspartate proteases, 2 asparagine proteases, 3 threonine proteases, and 2 unclassified proteases. Likewise, three inhibitors of proteolytic enzymes were found. Comparative analysis of variants in the genomes of strains 7P and 3-19 showed the presence of 81 nucleotide variants in the genome 3-19. Among them, the missense mutations in the rpsL, comA, spo0F genes and in the upstream region of the srlR gene were revealed. These nucleotide polymorphisms may have affected the streptomycin resistance and overproduction of extracellular hydrolases of the 3-19 strain. Finally, a plasmid DNA was found in strain 7P, which is lost in its derivative, strain 3-19. This plasmid contains five coding DNA sequencing (CDS), two regulatory proteins and three hypothetical proteins

    Isolation and Characterization of 1-Hydroxy-2,6,6-trimethyl-4-oxo-2-cyclohexene-1-acetic Acid, a Metabolite in Bacterial Transformation of Abscisic Acid

    No full text
    We report the discovery of a new abscisic acid (ABA) metabolite, found in the course of a mass spectrometric study of ABA metabolism by the rhizosphere bacterium Rhodococcus sp. P1Y. Analogue of (+)-ABA, enriched in tritium in the cyclohexene moiety, was fed in bacterial cells, and extracts containing radioactive metabolites were purified and analyzed to determine their structure. We obtained mass spectral fragmentation patterns and nuclear magnetic resonance spectra of a new metabolite of ABA identified as 1-hydroxy-2,6,6-trimethyl-4-oxo-2-cyclohexene-1-acetic acid, which we named rhodococcal acid (RA) and characterized using several other techniques. This metabolite is the second bacterial ABA degradation product in addition to dehydrovomifoliol that we described earlier. Taken together, these data reveal an unknown ABA catabolic pathway that begins with side chain disassembly, as opposed to the conversion of the cyclohexene moiety in plants. The role of ABA-utilizing bacteria in interactions with other microorganisms and plants is also discussed

    Rhizosphere Bacterium Rhodococcus sp. P1Y Metabolizes Abscisic Acid to Form Dehydrovomifoliol

    No full text
    The phytohormone abscisic acid (ABA) plays an important role in plant growth and in response to abiotic stress factors. At the same time, its accumulation in soil can negatively affect seed germination, inhibit root growth and increase plant sensitivity to pathogens. ABA is an inert compound resistant to spontaneous hydrolysis and its biological transformation is scarcely understood. Recently, the strain Rhodococcus sp. P1Y was described as a rhizosphere bacterium assimilating ABA as a sole carbon source in batch culture and affecting ABA concentrations in plant roots. In this work, the intermediate product of ABA decomposition by this bacterium was isolated and purified by preparative HPLC techniques. Proof that this compound belongs to ABA derivatives was carried out by measuring the molar radioactivity of the conversion products of this phytohormone labeled with tritium. The chemical structure of this compound was determined by instrumental techniques including high-resolution mass spectrometry, NMR spectrometry, FTIR and UV spectroscopies. As a result, the metabolite was identified as (4RS)-4-hydroxy-3,5,5-trimethyl-4-[(E)-3-oxobut-1-enyl]cyclohex-2-en-1-one (dehydrovomifoliol). Based on the data obtained, it was concluded that the pathway of bacterial degradation and assimilation of ABA begins with a gradual shortening of the acyl part of the molecule
    corecore