14 research outputs found
Association Between IL1B and SCN1A Polymorphism and Febrile Seizures in Children in Siberia
Background: Febrile seizures (FS) are a benign, age-dependent, genetically determined state, in which the child’s brain is susceptible to epileptic seizures occurring in response to hyperthermia. We assessed whether polymorphisms of IL1B and SCN1A genes, encoding the proinflammatory cytokine IL1B and SCN1A, respectively, could help to predict FS development and find a new way to treat FS.
Methods: We examined 121 children with FS and 30 children with HTS aged from 3 to 36 months. SNPs rs1143634 and rs16944 of IL1B gene, and rs3812718 and rs16851603 of SCN1A gene were determined by quantitative real-time PCR.
Results: The analysis for rs1143634 revealed an association between the CC genotype and increased risk of FS development (OR 6.56; P=0.0008) against the background of acute respiratory viral infection. The same result was obtained for rs16944 (OR 3.13; P=0.04) and an association of two homozygous genotypes CC/CC. For rs3812718, the carriage of heterozygous genotype CT demonstrated a direct relationship with FS development (OR 44.95; P=0.000).
Conclusion: Children with high FS risk need preventive treatment and joint observation of a pediatrician, pediatric infectionist, and a neurologist-epileptologist
Heart rate response to cognitive load as a marker of depression and increased anxiety
IntroductionUnderstanding the interplay between cardiovascular parameters, cognitive stress induced by increasing load, and mental well-being is vital for the development of integrated health strategies today. By monitoring physiological signals like electrocardiogram (ECG) and photoplethysmogram (PPG) in real time, researchers can discover how cognitive tasks influence both cardiovascular and mental health. Cardiac biomarkers resulting from cognitive strain act as indicators of autonomic nervous system function, potentially reflecting conditions related to heart and mental health, including depression and anxiety. The purpose of this study is to investigate how cognitive load affects ECG and PPG measurements and whether these can signal early cardiovascular changes during depression and anxiety disorders.MethodsNinety participants aged 18 to 45 years, ranging from symptom-free individuals to those with diverse psychological conditions, were assessed using psychological questionnaires and anamnesis. ECG and PPG monitoring were conducted as volunteers engaged in a cognitive 1-back task consisting of two separate blocks, each with six progressively challenging levels. The participants’ responses were analyzed to correlate physiological and psychological data with cognitive stressors and outcomes.ResultsThe study confirmed a notable interdependence between anxiety and depression, and cardiovascular responses. Task accuracy decreased with increased task difficulty. A strong relationship between PPG-measured heart rate and markers of depression and trait anxiety was observed. Increasing task difficulty corresponded to an increase in heart rate, linked with elevated levels of depression and trait anxiety. A strong relationship between ECG-measured heart rate and anxiety attacks was observed. Increasing task difficulty corresponded to an increase in heart rate, linked with elevated levels of anxiety attacks, although this association decreased under more challenging conditions.DiscussionThe findings underscore the predictive importance of ECG and PPG heart rate parameters in mental health assessment, particularly depression and anxiety under cognitive stress induced by increasing load. We discuss mechanisms of sympathetic activation explaining these differences. Our research outcomes have implications for clinical assessments and wearable device algorithms for more precise, personalized mental health diagnostics
Protocol for separation of the nuclear and the cytoplasmic fractions of Xenopus laevis embryonic cells for studying protein shuttling
Summary: This protocol for the separation of nuclear and cytoplasmic fractions of cells of Xenopus laevis embryos was developed to study changes in the intracellular localization of the Zyxin and Ybx1 proteins, which are capable of changing localization in response to certain stimuli. Western blot analysis allows the quantification of changes in the distribution of these proteins between the cytoplasm and nucleus, whereas the posttranslational modifications specific to each compartment can be identified by changes in electrophoretic mobility.For complete details on the use and execution of this protocol, please refer to Parshina et al. (2020)
Using RNA-binding proteins for immunoprecipitation of mRNAs from Xenopus laevis embryos
Summary: This protocol is developed for identifying mRNAs that form complexes with mRNA-binding proteins (mRBPs) in Xenopus laevis embryos at different developmental stages. Here, we describe the use of the Ybx1 mRBP for immunoprecipitation-based mRNA isolation. This protocol features the translation of the mRBP of interest directly in living embryos following injection of synthetic mRNA templates encoding a hybrid of this protein with a specific tag. This approach allows precipitation of mRNA-protein complexes from embryonic lysates using commercially available anti-tag antibodies.For complete details on the use and execution of this protocol, please refer to Parshina et al. (2020)
The Cytoskeletal Protein Zyxin Inhibits Retinoic Acid Signaling by Destabilizing the Maternal mRNA of the RXRγ Nuclear Receptor
Zyxin is an LIM-domain-containing protein that regulates the assembly of F-actin filaments in cell contacts. Additionally, as a result of mechanical stress, Zyxin can enter nuclei and regulate gene expression. Previously, we found that Zyxin could affect mRNA stability of the maternally derived stemness factors of Pou5f3 family in Xenopus laevis embryos through binding to Y-box factor1. In the present work, we demonstrate that Zyxin can also affect mRNA stability of the maternally derived retinoid receptor Rxrγ through the same mechanism. Moreover, we confirmed the functional link between Zyxin and Rxrγ-dependent gene expression. As a result, Zyxin appears to play an essential role in the regulation of the retinoic acid signal pathway during early embryonic development. Besides, our research indicates that the mechanism based on the mRNA destabilization by Zyxin may take part in the control of the expression of a fairly wide range of maternal genes
Targeted search for scaling genes reveals matrix metalloproteinase 3 as a scaler of the dorsal-ventral pattern in Xenopus laevis embryos
How embryos scale patterning according to size is still not fully understood. Through in silico screening and analysis of reaction-diffusion systems that could be responsible for scaling, we predicted the existence of genes whose expression is sensitive to embryo size and which regulate the scaling of embryonic patterning. To find these scalers, we identified genes with strongly altered expression in half-size Xenopus laevis embryos compared with full-size siblings at the gastrula stage. Among found genes, we investigated the role of matrix metalloproteinase-3 (mmp3), which was most strongly downregulated in half-size embryos. We show that Mmp3 scales dorsal-ventral patterning by degrading the slowly diffusing embryonic inducers Noggin1 and Noggin2 but preventing cleavage of the more rapidly diffusing inducer Chordin via degradation of a Tolloid-type proteinase. In addition to unraveling the mechanism underlying the scaling of dorsal-ventral patterning, this work provides proof of principal for scalers identification in embryos of other species
Neuroinflammation and Infection: Molecular Mechanisms Associated with Dysfunction of Neurovascular Unit
Neuroinflammation is a complex inflammatory process in the central nervous system, which is sought to play an important defensive role against various pathogens, toxins or factors that induce neurodegeneration. The onset of neurodegenerative diseases and various microbial infections are counted as stimuli that can challenge the host immune system and trigger the development of neuroinflammation. The homeostatic nature of neuroinflammation is essential to maintain the neuroplasticity. Neuroinflammation is regulated by the activity of neuronal, glial, and endothelial cells within the neurovascular unit, which serves as a “platform” for the coordinated action of pro- and anti-inflammatory mechanisms. Production of inflammatory mediators (cytokines, chemokines, reactive oxygen species) by brain resident cells or cells migrating from the peripheral blood, results in the impairment of blood-brain barrier integrity, thereby further affecting the course of local inflammation. In this review, we analyzed the most recent data on the central nervous system inflammation and focused on major mechanisms of neurovascular unit dysfunction caused by neuroinflammation and infections
Electrochemical Coprecipitation of Zinc and Aluminum in Aqueous Electrolytes for ZnO and AZO Coverage Deposition
The aim of this study is to examine the technological challenge of the electrochemical formation of zinc oxide and Al-doped ZnO films (ZnO:Al, AZO) as transparent conductive oxide coatings with complex architectures for solar cell photoanode materials. A cathodic electrodeposition of AZO was performed using aqueous nitrate electrolytes at 25°C. A significant positive deviation in aluminum percentage in the films was demonstrated by the LAES, EDX, and XPS methods, which originates from aluminum hydroxide sedimentation. The photoluminescent characteristics of the ZnO films reveal low band intensities related to intrinsic defects, while the samples with 1 at.% of aluminum show a strong and wide PL band at 600±80 nm and increase in conductivity