50 research outputs found
Herbicidal activity of slow-release herbicide formulations in wheat stands infested by weeds
This study addresses herbicidal activity of experimental formulations of metribuzin and tribenuron-methyl embedded in the degradable matrix of natural poly-3-hydroxybutyrate [P(3HB/MET) and P(3HB)/TBM] in stands of soft spring wheat (Triticum aestivum, cv. Altaiskaya 70) infested by weeds β white sweet clover Melilotus albus and lambβs quarters Chenopodium album β under laboratory conditions. Indicators of herbicidal activity were the density and weight of the vegetative organs of weeds measured during 30-day and 50-day experiments. Wheat crop yield was estimated as dependent on the method of herbicide delivery and the decrease in weed density. The experimental MET and TBM formulations showed pronounced herbicidal activity against the weed species used in the study. The effectiveness of the experimental formulations in inhibiting weed growth was comparable to and, sometimes, higher than that of the commercial formulations (positive control). The amount of the biomass of the wheat treated with the experimental herbicide formulations was significantly greater than that of the wheat treated with commercial formulations
Colonial Green Alga Botryococcus is a Producer of Valuable Metabolites
ΠΠΏΠ΅ΡΠ²ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ ΠΈΠ·ΠΎΠ»ΡΡ Π·Π΅Π»Π΅Π½ΠΎΠΉ Π²ΠΎΠ΄ΠΎΡΠΎΡΠ»ΠΈ Botryococcus braunii,
Π²ΡΠ΄Π΅Π»Π΅Π½Π½ΡΠΉ ΠΈΠ· ΠΎΠ·Π΅ΡΠ° Π¨ΠΈΡΠ° Π² 2022 Π³ΠΎΠ΄Ρ, ΠΊΠ°ΠΊ ΠΏΡΠΎΠ΄ΡΡΠ΅Π½Ρ ΡΠ°Π·ΡΡΡΠ°Π΅ΠΌΡΡ
Π±ΠΈΠΎΠΏΠ»Π°ΡΡΠΈΠΊΠΎΠ²
ΠΏΠΎΠ»ΠΈΠ³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠ°Π»ΠΊΠ°Π½ΠΎΠ°ΡΠΎΠ² (ΠΠΠ) ΠΈ ΡΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡΠΎΠ΄ΠΎΠ². ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ ΡΠΎΡΡΠ°Π² ΠΆΠΈΡΠ½ΡΡ
ΠΊΠΈΡΠ»ΠΎΡ, ΡΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡΠΎΠ΄ΠΎΠ²
ΠΈ ΠΏΠΎΠ»ΠΈΠ³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠ°Π»ΠΊΠ°Π½ΠΎΠ°ΡΠΎΠ². Π£Π³Π»Π΅Π²ΠΎΠ΄ΠΎΡΠΎΠ΄Ρ, ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΡΠ΅ΠΌΡΠ΅ ΠΈΠ·ΠΎΠ»ΡΡΠΎΠΌ, ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ
Π΄ΠΈΠ΅Π½Π°ΠΌΠΈ Ρ Π΄Π»ΠΈΠ½ΠΎΠΉ ΡΠ³Π»Π΅ΡΠΎΠ΄Π½ΠΎΠΉ ΡΠ΅ΠΏΠΈ Π‘27 ΠΈ Π‘29. ΠΠΎΠΊΠ°Π·Π°Π½Π° Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ Π°ΠΊΡΠ΅Π½ΠΈΡΠ½ΠΎΠΉ ΠΊΡΠ»ΡΡΡΡΡ B.
braunii ΠΊ ΡΠΈΠ½ΡΠ΅Π·Ρ ΠΠΠ ΠΈ Π½Π°Π»ΠΈΡΠΈΠ΅ Π² Π±ΠΈΠΎΠΌΠ°ΡΡΠ΅ Π°Π»ΡΠ³ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈ ΡΠΈΡΡΠΎΠΉ ΠΈ Π½Π΅Π°ΠΊΡΠ΅Π½ΠΈΡΠ½ΠΎΠΉ ΠΊΡΠ»ΡΡΡΡΡ
ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ° (Π΄ΠΎ 7β10 %). ΠΠ·ΡΡΠ΅Π½Π° Π±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ° ΠΊΠΎΠ½ΡΠΎΡΡΠΈΡΠΌΠ° Β«Π²ΠΎΠ΄ΠΎΡΠΎΡΠ»Ρ-Π±Π°ΠΊΡΠ΅ΡΠΈΠΈΒ»,
Π² ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½Ρ ΠΈ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Ρ Π±Π°ΠΊΡΠ΅ΡΠΈΠΈ Pseudomonas mendocina, Pseudomonas
koreensis, Aeromonas hydrophila, ΡΠΏΠΎΡΠΎΠ±Π½ΡΠ΅ ΠΊ ΡΠΈΠ½ΡΠ΅Π·Ρ ΠΠΠ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π°Π»ΡΠ³ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈ ΡΠΈΡΡΠ°Ρ
ΠΈ Π½Π΅Π°ΠΊΡΠ΅Π½ΠΈΡΠ½Π°Ρ ΠΊΡΠ»ΡΡΡΡΠ° B. braunii ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠΌ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π²ΠΎΠ΄ΠΎΡΠΎΡΠ»Π΅Π²ΡΡ
ΡΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡΠΎΠ΄ΠΎΠ²,
Π½ΠΎ ΡΠ°ΠΊΠΆΠ΅ ΠΈ ΡΠ°Π·ΡΡΡΠ°Π΅ΠΌΡΡ
Π±ΠΈΠΎΠΏΠ»Π°ΡΡΠΈΠΊΠΎΠ² ΠΠΠAn isolate of the green alga Botryococcus braunii collected from Lake Shira in 2022 has
been studied for the first time as a producer of degradable bioplastics polyhydroxyalkanoates (PHAs)
and hydrocarbons. The compositions of fatty acids, hydrocarbons, and PHAs were determined. The
hydrocarbons synthesized by the isolate were mainly represented by dienes with carbon chain lengths
C27 and C29. The study demonstrated the inability of the axenic culture of B. braunii to synthesize
PHAs and the presence of polymer in the biomass of unialgal and non-axenic culture (up to 7β10 %).
The bacterial component of the algal- bacterial consortium was studied, and bacteria Pseudomonas
mendocina, Pseudomonas koreensis, and Aeromonas hydrophila, capable of PHA synthesis, were
discovered in it and identified. The study showed that the unialgal and non-axenic culture of B. braunii
can be a source of not only algal hydrocarbons, but also degradable bioplastics PHA
Fatty Acids Composition in Cyanobacteria and Their Ability to Synthesize Degradable Polyhydroxyalkanoates (PHA)
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ ΡΠΎΡΡΠ°Π² ΠΆΠΈΡΠ½ΡΡ
ΠΊΠΈΡΠ»ΠΎΡ Π»ΠΈΠΏΠΈΠ΄ΠΎΠ² ΠΈ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΠΊ ΡΠΈΠ½ΡΠ΅Π·Ρ ΡΠ°Π·ΡΡΡΠ°Π΅ΠΌΡΡ
ΠΏΠΎΠ»ΠΈΠ³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠ°Π»ΠΊΠ°Π½ΠΎΠ°ΡΠΎΠ² (ΠΠΠ) Ρ ΡΠ°Π½Π΅Π΅ Π½Π΅ ΠΈΠ·ΡΡΠ΅Π½Π½ΡΡ
ΡΠΈΠ°Π½ΠΎΠ±Π°ΠΊΡΠ΅ΡΠΈΠΉ, Π²ΡΠ΄Π΅Π»Π΅Π½Π½ΡΡ
ΠΈΠ· Π²ΠΎΠ΄ΠΎΠ΅ΠΌΠΎΠ²
Π±Π°ΡΡΠ΅ΠΉΠ½Π° Ρ. ΠΠ½ΠΈΡΠ΅ΠΉ. ΠΠ·ΡΡΠ΅Π½ΠΎ 10 ΡΡΠ°ΠΌΠΌΠΎΠ² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
Π²ΠΈΠ΄ΠΎΠ², ΠΎΡΠ½ΠΎΡΡΡΠΈΡ
ΡΡ ΠΊ ΠΏΠΎΡΡΠ΄ΠΊΠ°ΠΌ
Chroococcales, Oscillatoriales, Nostocales ΠΈ Leptolyngbyales. Π ΡΠΎΡΡΠ°Π²Π΅ Π»ΠΈΠΏΠΈΠ΄ΠΎΠ² ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½ΡΡ
ΡΡΠ°ΠΌΠΌΠΎΠ² ΡΠΈΠ°Π½ΠΎΠ±Π°ΠΊΡΠ΅ΡΠΈΠΉ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Ρ 33 ΠΆΠΈΡΠ½ΡΠ΅ ΠΊΠΈΡΠ»ΠΎΡΡ, ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΡΡ
Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ Π²ΠΈΠ΄ΠΎΠ²ΠΎΠΉ ΡΠΏΠ΅ΡΠΈΡΠΈΠΊΠΈ ΡΠΈΠ°Π½ΠΎΠ±Π°ΠΊΡΠ΅ΡΠΈΠΉ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π²Π°ΡΡΠΈΡΠΎΠ²Π°Π»ΠΎ, ΠΎΠΊΠ°Π·ΡΠ²Π°Ρ
Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π½Π° Π½Π°ΡΡΡΠ΅Π½Π½ΠΎΡΡΡ Π»ΠΈΠΏΠΈΠ΄ΠΎΠ², ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠΎΡΡΠ°Π²Π»ΡΠ»Π° ΠΎΡ 0,4 Π΄ΠΎ 9,5. ΠΠ»Ρ Π²ΡΠ΅Ρ
ΡΡΠ°ΠΌΠΌΠΎΠ²
Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΆΠΈΡΠ½ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ (ΠΠ) ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π° ΠΏΠ°Π»ΡΠΌΠΈΡΠΈΠ½ΠΎΠ²Π°Ρ ΠΊΠΈΡΠ»ΠΎΡΠ°,
ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠΎΡΡΠ°Π²Π»ΡΠ»ΠΎ ΠΎΡ 24 Π΄ΠΎ 47 % ΠΎΡ ΡΡΠΌΠΌΡ ΠΠ. ΠΠΎΠΌΠΈΠ½ΠΈΡΡΡΡΠΈΠΌΠΈ ΠΌΠΎΠ½ΠΎΠ΅Π½ΠΎΠ²ΡΠΌΠΈ
ΠΠ Π±ΡΠ»ΠΈ C16:1Ι·7 ΠΈ C18:1Ι·9, ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΡΡ
Π²Π°ΡΡΠΈΡΠΎΠ²Π°Π»ΠΎ ΠΎΡ 2 Π΄ΠΎ 16 ΠΈ ΠΎΡ 2 Π΄ΠΎ 24 %
ΠΎΡ ΡΡΠΌΠΌΡ ΠΠ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ. ΠΡΠ΅ ΡΡΠ°ΠΌΠΌΡ ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π»ΠΈ ΠΏΠΎΠ»ΠΈΠ΅Π½ΠΎΠ²ΡΠ΅ ΠΊΠΈΡΠ»ΠΎΡΡ C16- ΠΈ C18
ΡΡΠ΄ΠΎΠ², Π½ΠΎ Π² ΡΠ°Π·Π»ΠΈΡΠ½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ. ΠΡΡΠ²Π»Π΅Π½Ρ ΠΏΡΡΡ ΡΡΠ°ΠΌΠΌΠΎΠ² (Chroococcus limneticus ACCS019,
Trichormus variabilis ACCS039, Trichormus variabilis ACCS060, Anabaena aequalis ACCS089
ΠΈ Cylindrospermum stagnale ACCS051), ΠΎΠ±Π»Π°Π΄Π°ΡΡΠΈΡ
ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡΡ ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°ΡΡ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ,
ΠΊΠΎΡΠΎΡΡΠΉ Ρ Π²ΡΠ΅Ρ
ΡΡΠ°ΠΌΠΌΠΎΠ² ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ Π³ΠΎΠΌΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠΌ 3-Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠΌΠ°ΡΠ»ΡΠ½ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ β ΠΏΠΎΠ»ΠΈ(3-
Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠ±ΡΡΠΈΡΠ°ΡΠΎΠΌ). ΠΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΡ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠΉ ΠΏΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΠ΅Π΄Ρ (ΠΈΡΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΈΠ· Π΅Π΅ ΡΠΎΡΡΠ°Π²Π°
Π°Π·ΠΎΡΠ° ΠΈ ΡΠΎΡΡΠΎΡΠ°) ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ»Π° ΠΌΠ½ΠΎΠ³ΠΎΠΊΡΠ°ΡΠ½ΠΎΠ΅ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ Π²Π½ΡΡΡΠΈΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ°.
Π¦ΠΈΠ°Π½ΠΎΠ±Π°ΠΊΡΠ΅ΡΠΈΠΈ Chroococcus limneticus ACCS019, Anabaena aequalis ACCS089 ΠΈ Cylindrospermum
stagnale ACCS51, Π² ΠΊΠΎΡΠΎΡΡΡ
ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ° ΡΠΎΡΡΠ°Π²ΠΈΠ»ΠΎ, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ, 8,9, 4,7 ΠΈ 3,2 %,
ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ
ΠΏΡΠΎΠ΄ΡΡΠ΅Π½ΡΠΎΠ² ΠΠΠ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ°Ρ
ΡΠΎΡΠΎΡΠΈΠ½ΡΠ΅Π·Π°The composition of fatty acids of lipids and the ability of cyanobacteria to synthesize degradable
polyhydroxyalkanoates (PHA) were examined in previously unstudied cyanobacteria isolated from a
number of water bodies of the Yenisei River Basin. Ten strains of various species belonging to the orders
Chroococcales, Oscillatoriales, Nostocales and Leptolyngbyales were investigated. Thirty-three fatty
acids (FAs) were identified in the lipid composition of the studied cyanobacterial strains. The ratio of
FAs was to a high extent species-specific with the lipid saturation ranging from 0,4 to 9,5. In all strains,
palmitic acid was identified as the main FA with the content ranging from 24 to 47 % of the total FA.
The dominant monoenoic FAs were C16:1Ι·7 and C18:1Ι·9; their content varied from 2 to 16 and from
2 to 24 % of the total FA, respectively. All strains synthesized polyenoic acids of the C16- and C18
series but in different amounts. Five strains (Chroococcus limneticus ACCS019, Trichormus variabilis
ACCS039, Trichormus variabilis ACCS060, Anabaena aequalis ACCS089 and Cylindrospermum
stagnale ACCS051) were determined to be able to synthesize a homopolymer of 3-hydroxybutyric
acid β poly(3-hydroxybutyrate). A modification of the standard nutrient medium (the exclusion of
nitrogen and phosphorus from its composition) ensured a multiple increase in the intracellular content
of the polymer. The cyanobacteria Chroococcus limneticus ACCS019, Anabaena aequalis ACCS089
and Cylindrospermum stagnale ACCS051 with the polymer content of 8.9, 4.7 and 3.2 %, respectively,
can be considered as potential producers of PHA in photosynthesi
Waste Fish Oil is a Promising Substrate for the Synthesis of Target Products of Biotechnology
ΠΠΈΡ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΉ ΠΈΠ· ΠΎΡΡ
ΠΎΠ΄ΠΎΠ² ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π° ΠΊΠΎΠ½ΡΠ΅ΡΠ²ΠΎΠ² ΠΏΡΠΈΠ±Π°Π»ΡΠΈΠΉΡΠΊΠΎΠΉ ΠΊΠΈΠ»ΡΠΊΠΈ (Sprattus
sprattus), Π²ΠΏΠ΅ΡΠ²ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΠ³Π»Π΅ΡΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΡΠ±ΡΡΡΠ°ΡΠ° Π΄Π»Ρ ΡΠΈΠ½ΡΠ΅Π·Π° Π±Π΅Π»ΠΊΠ° ΠΎΠ΄Π½ΠΎΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ
ΠΈ ΡΠ°Π·ΡΡΡΠ°Π΅ΠΌΡΡ
Π±ΠΈΠΎΠΏΠ»Π°ΡΡΠΈΠΊΠΎΠ² ΠΏΠΎΠ»ΠΈΠ³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠ°Π»ΠΊΠ°Π½ΠΎΠ°ΡΠΎΠ² (ΠΠΠ) Π² ΠΊΡΠ»ΡΡΡΡΠ΅ ΡΡΠ΅Ρ
ΡΡΠ°ΠΌΠΌΠΎΠ² Π±Π°ΠΊΡΠ΅ΡΠΈΠΉ:
Cupriavidus necator Bβ5786, C. necator Bβ8562, C. necator Bβ10646. Π ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΠΎΠΌ ΠΆΠΈΡΠ΅ ΠΎΠ±ΡΠΈΠ΅
Π»ΠΈΠΏΠΈΠ΄Ρ ΡΠΎΡΡΠ°Π²ΠΈΠ»ΠΈ 95 %, Π±Π΅Π»ΠΎΠΊ ΠΈ ΡΠ³Π»Π΅Π²ΠΎΠ΄Ρ 4 ΠΈ 1 % ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ; Π² ΡΠΎΡΡΠ°Π²Π΅ ΠΆΠΈΡΠ½ΡΡ
ΠΊΠΈΡΠ»ΠΎΡ
(ΠΠ) Π»ΠΈΠΏΠΈΠ΄ΠΎΠ² ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½ΠΎ 16 ΠΆΠΈΡΠ½ΡΡ
ΠΊΠΈΡΠ»ΠΎΡ Ρ Π΄ΠΎΠΌΠΈΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΠ°Π»ΡΠΌΠΈΡΠΈΠ½ΠΎΠ²ΠΎΠΉ (28,0 %
ΠΎΡ ΡΡΠΌΠΌΡ ΠΠ), ΠΎΠ»Π΅ΠΈΠ½ΠΎΠ²ΠΎΠΉ (25,3 % ΠΎΡ ΡΡΠΌΠΌΡ ΠΠ), Π΄ΠΎΠΊΠΎΠ·Π°Π³Π΅ΠΊΡΠ°Π΅Π½ΠΎΠ²ΠΎΠΉ (16,7 % ΠΎΡ ΡΡΠΌΠΌΡ ΠΠ)
ΠΊΠΈΡΠ»ΠΎΡ. ΠΡΠΈ Π²Π°ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ΅ΠΆΠΈΠΌΠΎΠ² Π²ΡΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ Π±Π°ΠΊΡΠ΅ΡΠΈΠΉ ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ Π°Π·ΠΎΡΠ°
Π² ΡΡΠ΅Π΄Π΅ ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΠΈΠ½ΡΠ΅Π·Π° Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠΉ Π±ΠΈΠΎΠΌΠ°ΡΡΡ ΠΈΠ»ΠΈ ΡΠ΅Π·Π΅ΡΠ²Π½ΡΡ
ΠΠΠ. ΠΠ° ΠΏΠΎΠ»Π½ΠΎΠΉ ΡΡΠ΅Π΄Π΅
Π²ΡΠ΅ ΡΡΠ°ΠΌΠΌΡ ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΡΡΡ Π²ΡΡΠΎΠΊΠΎΠ±Π΅Π»ΠΊΠΎΠ²ΡΡ Π±ΠΈΠΎΠΌΠ°ΡΡΡ Ρ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ Β«ΡΡΡΠΎΠ³ΠΎΒ» ΠΏΡΠΎΡΠ΅ΠΈΠ½Π° ΠΈ Π±Π΅Π»ΠΊΠ°
Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 70 ΠΈ 50 % ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ Ρ ΠΏΠΎΠ»Π½ΡΠΌ Π½Π°Π±ΠΎΡΠΎΠΌ Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡ, Π²ΠΊΠ»ΡΡΠ°Ρ Π½Π΅Π·Π°ΠΌΠ΅Π½ΠΈΠΌΡΠ΅.
ΠΡΠΈ Π»ΠΈΠΌΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΌ ΡΠΎΡΡΠ΅ Π±Π°ΠΊΡΠ΅ΡΠΈΠΉ ΠΏΠΎ Π°Π·ΠΎΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ Π²ΡΡΠΎΠΊΠΈΠ΅ (Π΄ΠΎ 60β70 %) Π²ΡΡ
ΠΎΠ΄Ρ ΠΠΠ,
ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π½ΡΠ΅ 3-Ρ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΡΠΌΠΈ ΡΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ°ΠΌΠΈ ΠΏΠΎΠ»ΠΈ(3-Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠ±ΡΡΠΈΡΠ°Ρ-ΡΠΎβ3-
Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠ²Π°Π»Π΅ΡΠ°Ρ-ΡΠΎβ3-
Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠ³Π΅ΠΊΡΠ°Π½ΠΎΠ°Ρ) (Π(3ΠΠβΡΠΎβ3ΠΠβΡΠΎβ3ΠΠ)) Ρ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ 3ΠΠ ΠΈ 3ΠΠ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ
0,20β0,31 ΠΈ 0,04β0,07 ΠΌΠΎΠ».% ΠΈ ΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌΠΈ ΡΡΠ΅Π΄Π½Π΅Π²Π΅ΡΠΎΠ²ΠΎΠΉ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ ΠΌΠ°ΡΡΡ Π½Π΅ Π½ΠΈΠΆΠ΅
600 ΠΊΠΠ° ΠΈ ΡΡΠ΅ΠΏΠ΅Π½ΡΡ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ½ΠΎΡΡΠΈ ΠΏΠΎΡΡΠ΄ΠΊΠ° 70 %. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½ΡΠΉ ΠΆΠΈΡΠΎΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΠΉ ΠΎΡΡ
ΠΎΠ΄
ΡΡΠ±ΠΎΠΏΠ΅ΡΠ΅ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡΠ½Π΅ΡΡΠΈ ΠΊ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΌΡ Π²ΠΎΠ·ΠΎΠ±Π½ΠΎΠ²Π»ΡΠ΅ΠΌΠΎΠΌΡ ΠΈ Π΄ΠΎΡΡΡΠΏΠ½ΠΎΠΌΡ ΡΡΠ±ΡΡΡΠ°ΡΡ Π΄Π»Ρ
Π±ΠΈΠΎΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ Π±Π΅Π»ΠΊΠ° ΠΎΠ΄Π½ΠΎΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ
ΠΈ Π±ΠΈΠΎΡΠ°Π·ΡΡΡΠ°Π΅ΠΌΡΡ
Β«Π·Π΅Π»Π΅Π½ΡΡ
Β» ΠΏΠ»Π°ΡΡΠΈΠΊΠΎΠ²Fat derived from the waste of the Baltic sprat (Sprattus sprattus) canning industry was studied as a carbon substrate for the synthesis of single cell protein and degradable bioplastics, polyhydroxyalkanoates (PHAs), in the culture of three bacterial strains: Cupriavidus necator Bβ5786, C. necator Bβ8562, and C. necator Bβ10646. The fatty substrate used in the present study contained 95 % of total lipids, 4 % of proteins, and 1 % of carbohydrates. Sixteen fatty acids (FAs) of lipids were identified, with palmitic (28.0 %), oleic (25.3 %), and docosahexaenoic (16.7 %) acids prevailing. The modes of cell cultivation were varied and the concentration of nitrogen in the medium was changed to direct metabolism towards synthesis of single cell protein or reserve PHAs. On complete nutrient medium, all strains synthesized high- protein biomass containing at least 70 and 50 % of βcrudeβ protein and protein, respectively, which were complete in amino acids, including essential ones. When bacterial growth was limited by nitrogen, high (up to 60β70 %) yields of PHAs were obtained. The PHAs were represented by 3-component copolymers poly(3-hydroxybutyrtae-coβ3-hydroxyvalerate-coβ3-hydroxyhaxanoate) (P(3HBβcoβ3HVβcoβ3HHx)) with 0.20β0.31 mol.% of 3HV and 0.04β0.07 mol.% of 3HHx and with a weight average molecular weight of at least 600 kDa and a degree of crystallinity of about 70 %. Based on these parameters, the fat- containing waste of the canning industry can be regarded as a promising renewable substrate for the biotechnological production of single cell protein and biodegradable βgreenβ plastics β polyhydroxyalkanoate
Synthesis and Intracellular Degradation of P(3HB)/DEG Copolymers by Cupriavidus eutrophus B-10646
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ ΡΠΈΠ½ΡΠ΅Π· ΠΈ Π²Π½ΡΡΡΠΈΠΊΠ»Π΅ΡΠΎΡΠ½Π°Ρ Π΄Π΅Π³ΡΠ°Π΄Π°ΡΠΈΡ Π΄ΠΈΠ±Π»ΠΎΠΊ-ΡΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² 3-Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠ±ΡΡΠΈΡΠ°ΡΠ° ΠΈ Π΄ΠΈΡΡΠΈΠ»Π΅Π½Π³Π»ΠΈΠΊΠΎΠ»Ρ (Π(3ΠΠ)/ΠΠΠ) ΠΊΡΠ»ΡΡΡΡΠΎΠΉ Cupriavidus eutrophus Π-10646. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΠΠ Π² ΡΡΠ΅Π΄Ρ Π² ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ 10-30 Π³/Π» Π½Π΅ Π²Π»ΠΈΡΠ»ΠΎ Π½Π° ΠΎΠ±ΡΠΈΠΉ Π²ΡΡ
ΠΎΠ΄ Π±ΠΈΠΎΠΌΠ°ΡΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ ΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ°. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΡΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΡ Ρ ΠΠΠ Π² ΠΌΠ΅Π½ΡΡΠ΅ΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, ΡΠ΅ΠΌ Π³ΠΎΠΌΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ Π(3ΠΠ), ΠΏΠΎΠ΄Π²Π΅ΡΠ³Π°ΡΡΡΡ Π²Π½ΡΡΡΠΈΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ Π΄Π΅Π³ΡΠ°Π΄Π°ΡΠΈΠΈ (ΠΈΡ
ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΡΠ½ΠΈΠΆΠ°Π»ΠΎΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ Π² 1.1-1.2 ΠΈ 1.8 ΡΠ°Π·Π°). Π‘ΠΈΠ½ΡΠ΅Π·ΠΈΡΡΠ΅ΠΌΡΠ΅ Π±Π°ΠΊΡΠ΅ΡΠΈΡΠΌΠΈ ΡΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΡ Π(3ΠΠ)/ΠΠΠ ΡΠΎΡΡΠΎΡΠ»ΠΈ ΠΈΠ· Π½ΠΈΠ·ΠΊΠΎΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ (62-217 ΠΊΠΠ°) ΠΈ Π²ΡΡΠΎΠΊΠΎΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ (2810-4860 ΠΊΠΠ°) ΡΡΠ°ΠΊΡΠΈΠΉ, ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΡΡ
ΡΠ°Π²Π½ΡΠ»ΠΎΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ 78.1-96.4 ΠΈ 3.6-21.9 % Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΡΠ°Π·Ρ ΡΠΎΡΡΠ° ΠΊΡΠ»ΡΡΡΡΡ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ Π½Π°ΡΡΡΠ΅Π½Π½ΠΎΡΡΠΈ Π²Π½ΡΡΡΠΈΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ
Π»ΠΈΠΏΠΈΠ΄ΠΎΠ² Cupriavidus eutrophus Π-10646, ΡΠ°ΡΡΡΡΠΈΡ
Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ ΠΠΠThe study addresses synthesis and intracellular degradation of copolymers consisting of 3-hydroxybutyrate and diethylene glycol (P(3HB)/DEG) by Cupriavidus eutrophus Π-10646. DEG addition to the medium at concentrations of 10-30 g/L did not influence the yields of biomass and polymer. During intracellular degradation, content of P(3HB)/DEG copolymers and homopolymer P(3HB) decreased at 1.1-1.2 and 1.8 times respectively. Bacterial cells grown in the medium with DEG synthesized copolymer consisting of polymer fractions with low molecular weight (62-217 kDa) and high molecular weight (2810-4860 kDa), whose contents were 78.1-96.4 % and 3.6-21.9 %, respectively, depending on the culture growth phase. DEG addition to the medium caused changes in the content of fatty acids of intracellular lipids, increasing their saturatio
Biosynthesis and Properties of Sulfur-Containing Polyhydroxyalkanoates (PHAs) Produced by Wild-Type Strain Cupriavidus necator B-10646
The study addresses the growth of the wild-type strain Cupriavidus necator B-10646 and the synthesis of sulfur-containing polyhydroxyalkanoates (PHA) by this strain on media containing fructose and three different precursors (3-mercaptopropionic acid, 3′,3′-dithiodipropionic acid and 3′,3′-thiodipropionic acid). By varying the concentration and number of doses of the precursors added into the bacterial culture, it was possible to find conditions that ensure the formation of 3-mercaptopropionate (3MP) monomers from the precursors and their incorporation into the C-chain of poly(3-hydroxybutyrate). A series of P(3HB-co-3MP) copolymer samples with different content of 3MP monomers (from 2.04 to 39.0 mol.%) were synthesized and the physicochemical properties were studied. The effect of 3MP monomers is manifested in a certain decrease in the molecular weight of the samples and an increase in polydispersity. Temperature changes are manifested in the appearance of two peaks in the melting region with different intervals regardless of the 3MP content. The studied P(3HB-co-3MP) samples, regardless of the content of 3MP monomers, are characterized by equalization of the ratio of the amorphous and crystalline phases and have a close degree of crystallinity with a minimum of 42%, = and a maximum of 54%
Synthesis and Intracellular Degradation of P(3HB)/DEG Copolymers by Cupriavidus eutrophus B-10646
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ ΡΠΈΠ½ΡΠ΅Π· ΠΈ Π²Π½ΡΡΡΠΈΠΊΠ»Π΅ΡΠΎΡΠ½Π°Ρ Π΄Π΅Π³ΡΠ°Π΄Π°ΡΠΈΡ Π΄ΠΈΠ±Π»ΠΎΠΊ-ΡΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² 3-Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠ±ΡΡΠΈΡΠ°ΡΠ° ΠΈ Π΄ΠΈΡΡΠΈΠ»Π΅Π½Π³Π»ΠΈΠΊΠΎΠ»Ρ (Π(3ΠΠ)/ΠΠΠ) ΠΊΡΠ»ΡΡΡΡΠΎΠΉ Cupriavidus eutrophus Π-10646. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΠΠ Π² ΡΡΠ΅Π΄Ρ Π² ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ 10-30 Π³/Π» Π½Π΅ Π²Π»ΠΈΡΠ»ΠΎ Π½Π° ΠΎΠ±ΡΠΈΠΉ Π²ΡΡ
ΠΎΠ΄ Π±ΠΈΠΎΠΌΠ°ΡΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ ΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ°. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΡΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΡ Ρ ΠΠΠ Π² ΠΌΠ΅Π½ΡΡΠ΅ΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, ΡΠ΅ΠΌ Π³ΠΎΠΌΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ Π(3ΠΠ), ΠΏΠΎΠ΄Π²Π΅ΡΠ³Π°ΡΡΡΡ Π²Π½ΡΡΡΠΈΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ Π΄Π΅Π³ΡΠ°Π΄Π°ΡΠΈΠΈ (ΠΈΡ
ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΡΠ½ΠΈΠΆΠ°Π»ΠΎΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ Π² 1.1-1.2 ΠΈ 1.8 ΡΠ°Π·Π°). Π‘ΠΈΠ½ΡΠ΅Π·ΠΈΡΡΠ΅ΠΌΡΠ΅ Π±Π°ΠΊΡΠ΅ΡΠΈΡΠΌΠΈ ΡΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΡ Π(3ΠΠ)/ΠΠΠ ΡΠΎΡΡΠΎΡΠ»ΠΈ ΠΈΠ· Π½ΠΈΠ·ΠΊΠΎΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ (62-217 ΠΊΠΠ°) ΠΈ Π²ΡΡΠΎΠΊΠΎΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ (2810-4860 ΠΊΠΠ°) ΡΡΠ°ΠΊΡΠΈΠΉ, ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΡΡ
ΡΠ°Π²Π½ΡΠ»ΠΎΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ 78.1-96.4 ΠΈ 3.6-21.9 % Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΡΠ°Π·Ρ ΡΠΎΡΡΠ° ΠΊΡΠ»ΡΡΡΡΡ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ Π½Π°ΡΡΡΠ΅Π½Π½ΠΎΡΡΠΈ Π²Π½ΡΡΡΠΈΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ
Π»ΠΈΠΏΠΈΠ΄ΠΎΠ² Cupriavidus eutrophus Π-10646, ΡΠ°ΡΡΡΡΠΈΡ
Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ ΠΠΠThe study addresses synthesis and intracellular degradation of copolymers consisting of 3-hydroxybutyrate and diethylene glycol (P(3HB)/DEG) by Cupriavidus eutrophus Π-10646. DEG addition to the medium at concentrations of 10-30 g/L did not influence the yields of biomass and polymer. During intracellular degradation, content of P(3HB)/DEG copolymers and homopolymer P(3HB) decreased at 1.1-1.2 and 1.8 times respectively. Bacterial cells grown in the medium with DEG synthesized copolymer consisting of polymer fractions with low molecular weight (62-217 kDa) and high molecular weight (2810-4860 kDa), whose contents were 78.1-96.4 % and 3.6-21.9 %, respectively, depending on the culture growth phase. DEG addition to the medium caused changes in the content of fatty acids of intracellular lipids, increasing their saturatio