11 research outputs found

    Osteoporosis: the current status of mesenchymal stem cell-based therapy

    Full text link

    Generation of an isogenic, gene-corrected iPSC line from a pre-symptomatic 28-year-old woman with an R406W mutation in the microtubule associated protein tau (MAPT) gene

    Get PDF
    AbstractFrontotemporal dementia with parkinsonism linked to chromosome 17q21.2 (FTDP-17) is an autosomal-dominant neurodegenerative disorder. Mutations in the MAPT (microtubule-associated protein tau) gene can cause FTDP-17, but the underlying pathomechanisms of the disease are still unknown. Induced pluripotent stem cells (iPSCs) hold great promise to model FTDP-17 as such cells can be differentiated in vitro to the required cell type. Furthermore, gene-editing approaches allow generating isogenic gene-corrected controls that can be used as a very specific control. Here, we report the generation of genetically corrected iPSCs from a pre-symptomatic carrier of the R406W mutation in the MAPT-gene

    Generation of an isogenic, gene-corrected iPSC line from a symptomatic 57-year-old female patient with frontotemporal dementia caused by a P301L mutation in the microtubule associated protein tau (MAPT) gene

    Get PDF
    AbstractFrontotemporal dementia with parkinsonism linked to chromosome 17q21.2 (FTDP-17) is an autosomal-dominant neurodegenerative disorder. Mutations in the MAPT (microtubule-associated protein tau)-gene can cause FTDP-17, but the underlying pathomechanisms of the disease are still unknown. Induced pluripotent stem cells (iPSCs) hold great promise to model FTDP-17 as such cells can be differentiated in vitro to the required cell type. Furthermore, gene-editing approaches allow generating isogenic gene-corrected controls that can be used as a very specific control. Here, we report the generation of genetically corrected iPSCs from a 57-year-old female FTD-17 patient carrying an P301L mutation in the MAPT-gene

    Generation of a gene-corrected isogenic control cell line from an Alzheimer's disease patient iPSC line carrying a A79V mutation in PSEN1

    Get PDF
    Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disease causing neural cell degeneration and brain atrophy and is considered to be the most common form of dementia. We previously generated an induced pluripotent stem cell (iPSC) line from an AD patient carrying an A79V mutation in PSEN1 as an in vitro disease model. Here we generated a gene-corrected version from this hiPSC line by substituting the point mutation with the wild-type sequence. The reported A79V-GC-iPSCs line is a very useful resource in combination with the A79V-iPSC line in order to study pathological cellular phenotypes related to this particular mutation

    Generation of a set of isogenic, gene-edited iPSC lines homozygous for all main APOE variants and an APOE knock-out line

    No full text
    Alzheimer's disease (AD) is the most frequent neurodegenerative disease amongst the elderly. The SNPs rs429358 and rs7412 in the APOE gene are the most common risk factor for sporadic AD, and there are three different alleles commonly referred to as APOE-ε2, APOE-ε3 and APOE-ε4. Induced pluripotent stem cells (iPSCs) hold great promise to model AD as such cells can be differentiated in vitro to the required cell type. Here we report the use of CRISPR/Cas9 technology employed on iPSCs from a healthy individual with an APOE-ε3/ε4 genotype to obtain isogenic APOE-ε2/ε2, APOE-ε3/ε3, APOE-ε4/ε4 lines as well as an APOE-knock-out line
    corecore