62 research outputs found

    A role for a novel centrosome cycle in asymmetric cell division

    Get PDF
    Tissue stem cells play a key role in tissue maintenance. Drosophila melanogaster central brain neuroblasts are excellent models for stem cell asymmetric division. Earlier work showed that their mitotic spindle orientation is established before spindle formation. We investigated the mechanism by which this occurs, revealing a novel centrosome cycle. In interphase, the two centrioles separate, but only one is active, retaining pericentriolar material and forming a “dominant centrosome.” This centrosome acts as a microtubule organizing center (MTOC) and remains stationary, forming one pole of the future spindle. The second centriole is inactive and moves to the opposite side of the cell before being activated as a centrosome/MTOC. This is accompanied by asymmetric localization of Polo kinase, a key centrosome regulator. Disruption of centrosomes disrupts the high fidelity of asymmetric division. We propose a two-step mechanism to ensure faithful spindle positioning: the novel centrosome cycle produces a single interphase MTOC, coarsely aligning the spindle, and spindle–cortex interactions refine this alignment

    Centrosome fragments and microtubules are transported asymmetrically away from division plane in anaphase

    Get PDF
    Spinning disc confocal microscopy of LLCPK1 cells expressing GFP-tubulin was used to demonstrate that microtubules (MTs) rapidly elongate to the cell cortex after anaphase onset. Concurrently, individual MTs are released from the centrosome and the centrosome fragments into clusters of MTs. Using cells expressing photoactivatable GFP-tubulin to mark centrosomal MT minus ends, a sevenfold increase in MT release in anaphase is documented as compared with metaphase. Transport of both individually released MTs and clusters of MTs is directionally biased: motion is directed away from the equatorial region. Clusters of MTs retain centrosomal components at their focus and the capacity to nucleate MTs. Injection of mRNA encoding nondegradable cyclin B blocked centrosome fragmentation and the stimulation of MT release in anaphase despite allowing anaphase-like chromosome segregation. Biased MT release may provide a mechanism for MT-dependent positioning of components necessary for specifying the site of contractile ring formation

    Putting the model to the test: are APC proteins essential for neuronal polarity, axon outgrowth, and axon targeting?

    Get PDF
    The highly polarized architecture of neurons is important for their function. Experimental data based on dominant-negative approaches suggest that the tumor suppressor adenomatous polyposis coli (APC), a regulator of Wnt signaling and the cytoskeleton, regulates polarity of neuroectodermal precursors and neurons, helping specify one neurite as the axon, promoting its outgrowth, and guiding axon pathfinding. However, such dominant-negative approaches might affect processes in which APC is not essential. We completely removed both APCs from Drosophila melanogaster larval neural precursors and neurons, testing whether APCs play universal roles in neuronal polarity. Surprisingly, APCs are not essential for asymmetric cell division or the stereotyped division axis of central brain (CB) neuroblasts, although they do affect cell cycle progression and spindle architecture. Likewise, CB, lobular plug, and mushroom body neurons do not require APCs for polarization, axon outgrowth, or, in the latter two cases, axon targeting. These data suggest that proposed cytoskeletal roles for APCs in mammals should be reassessed using loss of function tools

    Original CIN: reviewing roles for APC in chromosome instability

    Get PDF
    You may have seen the bumper sticker “Eve was framed.” Thousands of years of being blamed for original sin and still many wonder, where's the evidence? Today, the tumor suppressor adenomatous polyposis coli (APC) may have the same complaint about accusations of a different type of CIN, chromosome instability. A series of recent papers, including three in this journal, propose that loss of APC function plays an important role in the CIN seen in many colon cancer cells. However, a closer look reveals a complex story that raises more questions than answers

    Putting the model to the test: are APC proteins essential for neuronal polarity, axon outgrowth, and axon targeting?

    Get PDF
    The highly polarized architecture of neurons is important for their function. Experimental data based on dominant-negative approaches suggest that the tumor suppressor adenomatous polyposis coli (APC), a regulator of Wnt signaling and the cytoskeleton, regulates polarity of neuroectodermal precursors and neurons, helping specify one neurite as the axon, promoting its outgrowth, and guiding axon pathfinding. However, such dominant-negative approaches might affect processes in which APC is not essential. We completely removed both APCs from Drosophila melanogaster larval neural precursors and neurons, testing whether APCs play universal roles in neuronal polarity. Surprisingly, APCs are not essential for asymmetric cell division or the stereotyped division axis of central brain (CB) neuroblasts, although they do affect cell cycle progression and spindle architecture. Likewise, CB, lobular plug, and mushroom body neurons do not require APCs for polarization, axon outgrowth, or, in the latter two cases, axon targeting. These data suggest that proposed cytoskeletal roles for APCs in mammals should be reassessed using loss of function tools

    A novel GSK3-regulated APC:Axin interaction regulates Wnt signaling by driving a catalytic cycle of efficient βcatenin destruction

    Get PDF
    APC, a key negative regulator of Wnt signaling in development and oncogenesis, acts in the destruction complex with the scaffold Axin and the kinases GSK3 and CK1 to target βcatenin for destruction. Despite 20 years of research, APC's mechanistic function remains mysterious. We used FRAP, super-resolution microscopy, functional tests in mammalian cells and flies, and other approaches to define APC's mechanistic role in the active destruction complex when Wnt signaling is off. Our data suggest APC plays two roles: (1) APC promotes efficient Axin multimerization through one known and one novel APC:Axin interaction site, and (2) GSK3 acts through APC motifs R2 and B to regulate APC:Axin interactions, promoting high-throughput of βcatenin to destruction. We propose a new dynamic model of how the destruction complex regulates Wnt signaling and how this goes wrong in cancer, providing insights into how this multiprotein signaling complex is assembled and functions via multivalent interactions

    The SCF Slimb ubiquitin ligase regulates Plk4/Sak levels to block centriole reduplication

    Get PDF
    Restricting centriole duplication to once per cell cycle is critical for chromosome segregation and genomic stability, but the mechanisms underlying this block to reduplication are unclear. Genetic analyses have suggested an involvement for Skp/Cullin/F box (SCF)-class ubiquitin ligases in this process. In this study, we describe a mechanism to prevent centriole reduplication in Drosophila melanogaster whereby the SCF E3 ubiquitin ligase in complex with the F-box protein Slimb mediates proteolytic degradation of the centrosomal regulatory kinase Plk4. We identified SCFSlimb as a regulator of centriole duplication via an RNA interference (RNAi) screen of Cullin-based ubiquitin ligases. We found that Plk4 binds to Slimb and is an SCFSlimb target. Both Slimb and Plk4 localize to centrioles, with Plk4 levels highest at mitosis and absent during S phase. Using a Plk4 Slimb-binding mutant and Slimb RNAi, we show that Slimb regulates Plk4 localization to centrioles during interphase, thus regulating centriole number and ensuring the block to centriole reduplication

    Interphase centrosome organization by the PLP-Cnn scaffold is required for centrosome function

    Get PDF
    Cnn and PLP directly interact at two defined sites to coordinate the cell cycle–dependent rearrangement and scaffolding activity of the centrosome to permit normal centrosome organization, cell division, and embryonic viability.Pericentriolar material (PCM) mediates the microtubule (MT) nucleation and anchoring activity of centrosomes. A scaffold organized by Centrosomin (Cnn) serves to ensure proper PCM architecture and functional changes in centrosome activity with each cell cycle. Here, we investigate the mechanisms that spatially restrict and temporally coordinate centrosome scaffold formation. Focusing on the mitotic-to-interphase transition in Drosophila melanogaster embryos, we show that the elaboration of the interphase Cnn scaffold defines a major structural rearrangement of the centrosome. We identify an unprecedented role for Pericentrin-like protein (PLP), which localizes to the tips of extended Cnn flares, to maintain robust interphase centrosome activity and promote the formation of interphase MT asters required for normal nuclear spacing, centrosome segregation, and compartmentalization of the syncytial embryo. Our data reveal that Cnn and PLP directly interact at two defined sites to coordinate the cell cycle–dependent rearrangement and scaffolding activity of the centrosome to permit normal centrosome organization, cell division, and embryonic viability

    Two Polo-like kinase 4 binding domains in Asterless perform distinct roles in regulating kinase stability

    Get PDF
    Plk4 (Polo-like kinase 4) and its binding partner Asterless (Asl) are essential, conserved centriole assembly factors that induce centriole amplification when overexpressed. Previous studies found that Asl acts as a scaffolding protein; its N terminus binds Plk4’s tandem Polo box cassette (PB1-PB2) and targets Plk4 to centrioles to initiate centriole duplication. However, how Asl overexpression drives centriole amplification is unknown. In this paper, we investigated the Asl–Plk4 interaction in Drosophila melanogaster cells. Surprisingly, the N-terminal region of Asl is not required for centriole duplication, but a previously unidentified Plk4-binding domain in the C terminus is required. Mechanistic analyses of the different Asl regions revealed that they act uniquely during the cell cycle: the Asl N terminus promotes Plk4 homodimerization and autophosphorylation during interphase, whereas the Asl C terminus stabilizes Plk4 during mitosis. Therefore, Asl affects Plk4 in multiple ways to regulate centriole duplication. Asl not only targets Plk4 to centrioles but also modulates Plk4 stability and activity, explaining the ability of overexpressed Asl to drive centriole amplification
    corecore