23 research outputs found

    Spine alignment in men during lateral sleep position: experimental study and modeling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A proper sleep system can affect the spine support in neutral position. Most of the previous studies in scientific literature have focused on the effects of customary mattresses on the spinal alignment. To keep the spine in optimal alignment, one can use sleep surfaces with different zonal elasticity, the so called custom-made arrangements. The required stiffness of a sleep surface for each individual can be obtained by changing this arrangement applying the experimental method and modeling.</p> <p>Methods</p> <p>In experimental part, the coordinate positions of the markers mounted on the spinous processes of the vertebrae of 25 male volunteers were registered in frontal plane through the optical tracking method and so the spinal alignment was obtained in lateral sleep position on soft and firm surfaces and on the best custom-made arrangement. Thereupon the π-P<sub>8 </sub>angles were extracted from these alignments and then were compared with each other. In modeling part the anthropometric data of four different types of volunteers were used. And then the models built in BRG.LifeMOD (ver. 2007, Biomechanics Research Group, Inc., USA) based on these data and in accordance with the experimental tests, were analyzed.</p> <p>Results</p> <p>The one way ANOVA statistical model and the post hoc tests showed a significant difference in the π-P<sub>8 </sub>angles between soft & custom-made and soft & firm mattresses at the p = 0.001 level and between firm & soft mattresses at the p = 0.05 level. In modeling part, the required stiffness of the sleep surface for four weight-dimensional groups was acquired quantitatively.</p> <p>Conclusions</p> <p>The mattress with a custom-made arrangement is a more appropriate choice for heavier men with pronounced body contour. After data fitting, it was observed that the variations of spinal alignment obtained from both methods have the same trend. Observing the amount of required stiffness obtained for the sleep surface, can have a significant effect on keeping the spine healthy.</p

    Stress distribution analysis in healthy and stenosed carotid artery models reconstructed from in vivo ultrasonography

    Get PDF
    Purpose This study investigated the accuracy of models reconstructed from ultrasound image processing by comparing the radial displacement waveforms of a subject-specific artery model and evaluated stress changes in the proximal shoulder, throat, and distal shoulder of the plaques depending on the degree of carotid artery stenosis. Methods Three groups of subjects (healthy and with less than 50% or more carotid stenosis) were evaluated with ultrasonography. Two-dimensional transverse imaging of the common carotid artery was performed to reconstruct the geometry. A longitudinal view of the same region was recorded to extract the Kelvin viscoelastic model parameters. The pulse pressure waveform and the effective pressure of perivascular tissue were loaded onto the internal and external walls of the model. Effective, circumferential, and principal stresses applied to the plaque throat, proximal shoulder, and distal shoulder in the transverse planes were extracted. Results The radial displacement waveforms of the model were closely correlated with those of image processing in all three groups. The mean of the effective, circumferential, and principal stresses of the healthy arteries were 15.01±4.93, 12.97±5.07, and 12.39±2.86 kPa, respectively. As stenosis increased from mild to significant, the mean values of the effective, circumferential, and first principal stresses increased significantly (97%, 74%, and 103% at the plaque throat, respectively) (P<0.05). The minimum effective stress was at the lipid pool. The effective stress in calcified areas was higher than in other parts of the artery wall. Conclusion This model can discriminate differences in stresses applied to mildly and severely stenotic plaques

    A NUMERICAL STUDY OF MAGNETIC NANOPARTICLES HYPERTHERMIA WITH ALTERNATING MAGNETIC FIELD UNDER INFLUENCE OF CONVECTION HEAT TRANSFER

    No full text
    In this paper, a numerical study has been conducted to understand the heating effects of the magnetic nanoparticles in the tumor hyperthermia in order to reach a desirable temperature in the tumor. The developed numerical method has been utilized to obtain the temperature distribution and magnetic induction value using the bioheat and Maxwell equations inside a cylindrical geometry including the tumor and healthy tissue while the perfusion and metabolism rates have been considered. Results show that among all the parameters effected on temperature rise, the diameter of the nanoparticles (ranging from 5,5.5,6 nm) has the maximum effect, the strength of the applied alternating current (AC) magnetic field (ranging from 50, 62,75 mT) has the minimum effect, and the volume fraction (ranging from 0.0004,0.0006,0.0008) and the frequency of the applied AC magnetic field (ranging from 300,400,500 kHz) result in increasing the temperature relatively. The temperature rise for a temperature-dependent metabolism is larger than a temperature-independent metabolism. Among the materials investigated in this study, FePt has the most pronounced effect

    Assessing the blood pressure waveform of the carotid artery using an ultrasound image processing method

    No full text
    Purpose The aim of this study was to introduce and implement a noninvasive method to derive the carotid artery pressure waveform directly by processing diagnostic sonograms of the carotid artery. Methods Ultrasound image sequences of 20 healthy male subjects (age, 36±9 years) were recorded during three cardiac cycles. The internal diameter and blood velocity waveforms were extracted from consecutive sonograms over the cardiac cycles by using custom analysis programs written in MATLAB. Finally, the application of a mathematical equation resulted in time changes of the arterial pressure. The resulting pressures were calibrated using the mean and the diastolic pressure of the radial artery. Results A good correlation was found between the mean carotid blood pressure obtained from the ultrasound image processing and the mean radial blood pressure obtained using a standard digital sphygmomanometer (R=0.91). The mean absolute difference between the carotid calibrated pulse pressures and those measured clinically was -1.333±6.548 mm Hg. Conclusion The results of this study suggest that consecutive sonograms of the carotid artery can be used for estimating a blood pressure waveform. We believe that our results promote a noninvasive technique for clinical applications that overcomes the reproducibility problems of common carotid artery tonometry with technical and anatomical causes

    Evaluation of Biaxial Mechanical Properties of Aortic Media Based on the Lamellar Microstructure

    No full text
    Evaluation of the mechanical properties of arterial wall components is necessary for establishing a precise mechanical model applicable in various physiological and pathological conditions, such as remodeling. In this contribution, a new approach for the evaluation of the mechanical properties of aortic media accounting for the lamellar structure is proposed. We assumed aortic media to be composed of two sets of concentric layers, namely sheets of elastin (Layer I) and interstitial layers composed of mostly collagen bundles, fine elastic fibers and smooth muscle cells (Layer II). Biaxial mechanical tests were carried out on human thoracic aortic samples, and histological staining was performed to distinguish wall lamellae for determining the dimensions of the layers. A neo-Hookean strain energy function (SEF) for Layer I and a four-parameter exponential SEF for Layer II were allocated. Nonlinear regression was used to find the material parameters of the proposed microstructural model based on experimental data. The non-linear behavior of media layers confirmed the higher contribution of elastic tissue in lower strains and the gradual engagement of collagen fibers. The resulting model determines the nonlinear anisotropic behavior of aortic media through the lamellar microstructure and can be assistive in the study of wall remodeling due to alterations in lamellar structure during pathological conditions and aging
    corecore