50 research outputs found
Modelling radiation-induced cell cycle delays
Ionizing radiation is known to delay the cell cycle progression. In
particular after particle exposure significant delays have been observed and it
has been shown that the extent of delay affects the expression of damage such
as chromosome aberrations. Thus, to predict how cells respond to ionizing
radiation and to derive reliable estimates of radiation risks, information
about radiation-induced cell cycle perturbations is required. In the present
study we describe and apply a method for retrieval of information about the
time-course of all cell cycle phases from experimental data on the mitotic
index only. We study the progression of mammalian cells through the cell cycle
after exposure. The analysis reveals a prolonged block of damaged cells in the
G2 phase. Furthermore, by performing an error analysis on simulated data
valuable information for the design of experimental studies has been obtained.
The analysis showed that the number of cells analyzed in an experimental sample
should be at least 100 to obtain a relative error less than 20%.Comment: 19 pages, 11 figures, accepted for publication in Radiation and
Environmental Biophysic