24 research outputs found

    Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates

    Get PDF
    This article describes the use of biofilm reactors for the production of various chemicals by fermentation and wastewater treatment. Biofilm formation is a natural process where microbial cells attach to the support (adsorbent) or form flocs/aggregates (also called granules) without use of chemicals and form thick layers of cells known as "biofilms." As a result of biofilm formation, cell densities in the reactor increase and cell concentrations as high as 74 gL(-1 )can be achieved. The reactor configurations can be as simple as a batch reactor, continuous stirred tank reactor (CSTR), packed bed reactor (PBR), fluidized bed reactor (FBR), airlift reactor (ALR), upflow anaerobic sludge blanket (UASB) reactor, or any other suitable configuration. In UASB granular biofilm particles are used. This article demonstrates that reactor productivities in these reactors have been superior to any other reactor types. This article describes production of ethanol, butanol, lactic acid, acetic acid/vinegar, succinic acid, and fumaric acid in addition to wastewater treatment in the biofilm reactors. As the title suggests, biofilm reactors have high potential to be employed in biotechnology/bioconversion industry for viable economic reasons. In this article, various reactor types have been compared for the above bioconversion processes

    High-throughput screening of cellulase F mutants from multiplexed plasmid sets using an automated plate assay on a functional proteomic robotic workcell

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The field of plasmid-based functional proteomics requires the rapid assay of proteins expressed from plasmid libraries. Automation is essential since large sets of mutant open reading frames are being cloned for evaluation. To date no integrated automated platform is available to carry out the entire process including production of plasmid libraries, expression of cloned genes, and functional testing of expressed proteins.</p> <p>Results</p> <p>We used a functional proteomic assay in a multiplexed setting on an integrated plasmid-based robotic workcell for high-throughput screening of mutants of cellulase F, an endoglucanase from the anaerobic fungus <it>Orpinomyces </it>PC-2. This allowed us to identify plasmids containing optimized clones expressing mutants with improved activity at lower pH. A plasmid library of mutagenized clones of the <it>celF </it>gene with targeted variations in the last four codons was constructed by site-directed PCR mutagenesis and transformed into <it>Escherichia coli</it>. A robotic picker integrated into the workcell was used to inoculate medium in a 96-well deep well plate, combining the transformants into a multiplexed set in each well, and the plate was incubated on the workcell. Plasmids were prepared from the multiplexed culture on the liquid handler component of the workcell and used for <it>in vitro </it>transcription/translation. The multiplexed expressed recombinant proteins were screened for improved activity and stability in an azo-carboxymethylcellulose plate assay. The multiplexed wells containing mutants with improved activity were identified and linked back to the corresponding multiplexed cultures stored in glycerol. Spread plates were prepared from the glycerol stocks and the workcell was used to pick single colonies from the spread plates, prepare plasmid, produce recombinant protein, and assay for activity. The screening assay and subsequent deconvolution of the multiplexed wells resulted in identification of improved CelF mutants and corresponding optimized clones in expression-ready plasmids.</p> <p>Conclusion</p> <p>The multiplex method using an integrated automated platform for high-throughput screening in a functional proteomic assay allows rapid identification of plasmids containing optimized clones ready for use in subsequent applications including transformations to produce improved strains or cell lines.</p

    Random UV-C mutagenesis of Scheffersomyces (formerly Pichia) stipitis NRRL Y-7124 to improve anaerobic growth on lignocellulosic sugars

    Get PDF
    Scheffersomyces (formerly Pichia) stipitis NRRL Y-7124 was mutagenized using UV-C irradiation to produce yeast strains for anaerobic conversion of lignocellulosic sugars to ethanol. UV-C irradiation potentially produces large numbers of random mutations broadly and uniformly over the whole genome to generate unique strains. Wild-type cultures of S. stipitis NRRL Y-7124 were subjected to UV-C (234 nm) irradiation targeted at approximately 40% cell survival. When surviving cells were selected in sufficient numbers via automated plating strategies and cultured anaerobically on xylose medium for 5 months at 28°C, five novel mutagenized S. stipitis strains were obtained. Variable number tandem repeat analysis revealed that mutations had occurred in the genome, which may have produced genes that allowed the anaerobic utilization of xylose. The mutagenized strains were capable of growing anaerobically on xylose/glucose substrate with higher ethanol production during 250- to 500-h growth than a Saccharomyces cerevisiae yeast strain that is the standard for industrial fuel ethanol production. The S. stipitis strains resulting from this intense multigene mutagenesis strategy have potential application in industrial fuel ethanol production from lignocellulosic hydrolysates

    Recovery of butanol by counter-current carbon dioxide fractionation with its potential application to butanol fermentation

    No full text
    A counter-current CO2 fractionation method was applied as a mean to recover n-butanol and other compounds that are typically obtained from biobutanol fermentation broth from aqueous solutions. The influence of operating variables, such as solvent-to-feed ratio, temperature, pressure and feed solution composition was experimentally studied in terms of separation efficiency, butanol removal rate, total removal and butanol concentration in the extract at the end of the continuous cycle. With respect to the temperature and pressure conditions investigated, results show that the highest separation efficiency was obtained at 35 °C and 10.34 MPa. At these operating conditions, 92.3% of the butanol present in the feed solution was extracted, and a concentration of 787.5 g·L−1 of butanol in the extract was obtained, starting from a feed solution of 20 g·L−1. Selectivity was calculated from experimental data, concluding that our column performs much better than a single equilibrium stage. When adding ethanol and acetone to the feed solution, ethanol was detected in the water-rich fraction (raffinate), whereas the highest concentration of acetone was found in the butanol rich fraction (extract)

    Cellulosic Butanol Biorefinery: Production of Biobutanol from High Solid Loadings of Sweet Sorghum Bagasse—Simultaneous Saccharification, Fermentation, and Product Recovery

    No full text
    Butanol was produced commercially from cornstarch and sugarcane molasses (renewable resources) until 1983, when production of these plants was forced to cease because of unfavorable economics of production caused in part by escalating prices of these feedstocks. During recent years, the focus of research has been on the use of economically available agricultural biomass and residues and cutting-edge science and technology to make butanol production a commercially viable process again. In this study, we produced butanol from sweet sorghum bagasse (SSB) by employing high concentrations of SSB solids and integrated process technology through which simultaneous saccharification, fermentation, and recovery (SSFR) were conducted as one unit operation. The concentrated SSB (16–22% dry wt. basis or 160–220 gL−1) was used to reduce reactor size and potentially reduce fixed and operational costs. Indeed, ABE productivity and yield of 0.21 gL−1h−1 and 0.39 were obtained, respectively, when 160 gL−1 SSB (16%, dry wt.) was used in the SSFR process. In nonintegrated systems, use of &gt;90 gL−1 solid loading is improbable and has not been done until this study
    corecore