11 research outputs found

    Influence of Costimulatory Molecules on Immune Response to Leishmania major by Human Cells In Vitro

    No full text
    The importance of CD40, CD80, and CD86 costimulatory molecules in anti-Leishmania immune responses has been established in murine models. A role for these costimulatory molecules in human anti-Leishmania immune responses was investigated in this study. Autologous macrophages and peripheral blood leukocytes (PBL) were prepared from peripheral blood mononuclear cells of Leishmania-naive donors and cultured with or without Leishmania major in various combinations. After 7 days of culture, high levels of CD40 and CD86 were expressed on macrophages in the presence or absence of L. major. When macrophages were cultured for an additional 7 days with PBL, expression of all three costimulatory molecules was detected. When L. major was present in these cultures, the expression of CD80, and to a lesser extent CD40, on macrophages was enhanced. Blockade of CD80, CD86, or both molecules (in the order of greatest effect) in cultures containing macrophages, PBL, and L. major significantly inhibited the production of gamma interferon, interleukin-5 (IL-5), and IL-12. Blockade of CD40-CD154 interactions also significantly inhibited production of these cytokines in response to L. major. Production of IL-10 was unaltered by the blockade of these costimulatory molecules. Thus, these data suggest that CD40, CD80, and CD86 expression and regulation may significantly impact anti-Leishmania immune responses in humans

    Leishmaniasis: Current Status of Vaccine Development

    No full text
    Leishmaniae are obligatory intracellular protozoa in mononuclear phagocytes. They cause a spectrum of diseases, ranging in severity from spontaneously healing skin lesions to fatal visceral disease. Worldwide, there are 2 million new cases each year and 1/10 of the world's population is at risk of infection. To date, there are no vaccines against leishmaniasis and control measures rely on chemotherapy to alleviate disease and on vector control to reduce transmission. However, a major vaccine development program aimed initially at cutaneous leishmaniasis is under way. Studies in animal models and humans are evaluating the potential of genetically modified live attenuated vaccines, as well as a variety of recombinant antigens or the DNA encoding them. The program also focuses on new adjuvants, including cytokines, and delivery systems to target the T helper type 1 immune responses required for the elimination of this intracellular organism. The availability, in the near future, of the DNA sequences of the human and Leishmania genomes will extend the vaccine program. New vaccine candidates such as parasite virulence factors will be identified. Host susceptibility genes will be mapped to allow the vaccine to be targeted to the population most in need of protection

    The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games

    No full text
    The members of the tumour necrosis factor (TNF)/tumour necrosis factor receptor (TNFR) superfamily are critically involved in the maintenance of homeostasis of the immune system. The biological functions of this system encompass beneficial and protective effects in inflammation and host defence as well as a crucial role in organogenesis. At the same time, members of this superfamily are responsible for host damaging effects in sepsis, cachexia, and autoimmune diseases. This review summarizes recent progress in the immunbiology of the TNF/TNFR superfamily focusing on results obtained from animal studies using gene targeted mice. The different modes of signalling pathways affecting cell proliferation, survival, differentiation, apoptosis, and immune organ development as well as host defence are reviewed. Molecular and cellular mechanisms that demonstrate a therapeutic potential by targeting individual receptors or ligands for the treatment of chronic inflammatory or autoimmune diseases are discussed

    Therapeutic Potential and Strategies for Inhibiting Tumor Necrosis Factor-α

    No full text
    corecore