12 research outputs found

    Human Coronaviruses Do Not Transfer Efficiently between Surfaces in the Absence of Organic Materials

    No full text
    Human coronaviruses, including SARS-CoV-2, are known to spread mainly via close contact and respiratory droplets. However, other potential means of transmission may be present. Fomite-mediated transmission occurs when viruses are deposited onto a surface and then transfer to a subsequent individual. Surfaces can become contaminated directly from respiratory droplets or from a contaminated hand. Due to mask mandates in many countries around the world, the former is less likely. Hands can become contaminated if respiratory droplets are deposited on them (i.e., coughing or sneezing) or through contact with fecal material where human coronaviruses (HCoVs) can be shed. The focus of this paper is on whether human coronaviruses can transfer efficiently from contaminated hands to food or food contact surfaces. The surfaces chosen were: stainless steel, plastic, cucumber and apple. Transfer was first tested with cellular maintenance media and three viruses: two human coronaviruses, 229E and OC43, and murine norovirus-1, as a surrogate for human norovirus. There was no transfer for either of the human coronaviruses to any of the surfaces. Murine norovirus-1 did transfer to stainless steel, cucumber and apple, with transfer efficiencies of 9.19%, 5.95% and 0.329%, respectively. Human coronavirus OC43 transfer was then tested in the presence of fecal material, and transfer was observed for stainless steel (0.52%), cucumber (19.82%) and apple (15.51%) but not plastic. This study indicates that human coronaviruses do not transfer effectively from contaminated hands to contact surfaces without the presence of fecal material

    The efficacy of siRNAs against Hepatitis C virus Is strongly influenced by structure and target site accessibility

    Get PDF
    Hepatitis C virus (HCV) is a global health problem. Designing therapeutic agents that target HCV\u2019s RNA genome remains challenging. HCV genomic RNA is large and highly structured with long-range genome-scale ordered RNA structures. Predicting the secondary- and tertiary-structure elements that reveal the accessibility of target sites within HCV RNA is difficult because of the abundance of longrange interactions. Target site accessibility remains a significant barrier to the design of effective therapeutics such as small interfering RNAs (siRNAs) against different strains of HCV. Here we developed two methods that interrogate the folding of HCV RNA, an approach involving viral RNA microarrays (VRMs) and an HCV viral RNA-coated magnetic bead-based (VRB) assay. VRMs and VRBs were used to determine target site accessibility for siRNAs designed against the HCV genome. Both methods predicted potency of siRNAs in cell-culture models for HCV replication that are not easily predicted by informatics means.Peer reviewed: YesNRC publication: Ye

    A new chemical probe for phosphatidylinositol kinase activity

    No full text
    Phosphatidylinositol kinases (PIKs) are key enzymatic regulators of membrane phospholipids and membrane environments that control many aspects of cellular function, from signal transduction to secretion, through the Golgi apparatus. Here, we have developed a photoreactive "clickable" probe, PIK-BPyne, to report the activity of PIKs. We investigated the selectivity and efficiency of the probe to both inhibit and label PIKs, and we compared PIK-BPyne to a wortmannin activity-based probe also known to target PIKs. We found that PIK-BPyne can act as an effective in situ activity-based probe, and for the first time, report changes in PI4K-III\u3b2 activity induced by the hepatitis C virus. These results establish the utility of PIK-BPyne for activity-based protein profiling studies of PIK function in native biological systems. Active PIKs: Phosphatidylinositol kinases (PIKs) are key enzymatic regulators of membrane phospholipids and environments that control many aspects of cellular function, from signal transduction to secretion. We developed a photoreactive "clickable" probe, PIK-BPyne, to assess activity of PIKs in native biological systems and demonstrated its ability to monitor hepatitis C virus-induced changes in PIK-III\u3b2 activity.Peer reviewed: YesNRC publication: Ye
    corecore