14 research outputs found

    Human Coronaviruses Do Not Transfer Efficiently between Surfaces in the Absence of Organic Materials

    No full text
    Human coronaviruses, including SARS-CoV-2, are known to spread mainly via close contact and respiratory droplets. However, other potential means of transmission may be present. Fomite-mediated transmission occurs when viruses are deposited onto a surface and then transfer to a subsequent individual. Surfaces can become contaminated directly from respiratory droplets or from a contaminated hand. Due to mask mandates in many countries around the world, the former is less likely. Hands can become contaminated if respiratory droplets are deposited on them (i.e., coughing or sneezing) or through contact with fecal material where human coronaviruses (HCoVs) can be shed. The focus of this paper is on whether human coronaviruses can transfer efficiently from contaminated hands to food or food contact surfaces. The surfaces chosen were: stainless steel, plastic, cucumber and apple. Transfer was first tested with cellular maintenance media and three viruses: two human coronaviruses, 229E and OC43, and murine norovirus-1, as a surrogate for human norovirus. There was no transfer for either of the human coronaviruses to any of the surfaces. Murine norovirus-1 did transfer to stainless steel, cucumber and apple, with transfer efficiencies of 9.19%, 5.95% and 0.329%, respectively. Human coronavirus OC43 transfer was then tested in the presence of fecal material, and transfer was observed for stainless steel (0.52%), cucumber (19.82%) and apple (15.51%) but not plastic. This study indicates that human coronaviruses do not transfer effectively from contaminated hands to contact surfaces without the presence of fecal material

    The efficacy of siRNAs against Hepatitis C virus Is strongly influenced by structure and target site accessibility

    Get PDF
    Hepatitis C virus (HCV) is a global health problem. Designing therapeutic agents that target HCV\u2019s RNA genome remains challenging. HCV genomic RNA is large and highly structured with long-range genome-scale ordered RNA structures. Predicting the secondary- and tertiary-structure elements that reveal the accessibility of target sites within HCV RNA is difficult because of the abundance of longrange interactions. Target site accessibility remains a significant barrier to the design of effective therapeutics such as small interfering RNAs (siRNAs) against different strains of HCV. Here we developed two methods that interrogate the folding of HCV RNA, an approach involving viral RNA microarrays (VRMs) and an HCV viral RNA-coated magnetic bead-based (VRB) assay. VRMs and VRBs were used to determine target site accessibility for siRNAs designed against the HCV genome. Both methods predicted potency of siRNAs in cell-culture models for HCV replication that are not easily predicted by informatics means.Peer reviewed: YesNRC publication: Ye

    Activity-based profiling of the proteasome pathway during hepatitis C virus infection

    No full text
    Hepatitis C virus (HCV) infection often leads to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The stability of the HCV proteins is controlled by ubiquitin-dependent and ubiquitin-independent proteasome pathways. Many viruses modulate proteasome function for their propagation. To examine the interrelationship between HCV and the proteasome pathways we employed a quantitative activity-based protein profiling method. Using this approach we were able to quantify the changes in the activity of several proteasome subunits and found that proteasome activity is drastically reduced by HCV replication. The results imply a link between the direct downregulation of the activity of this pathway and chronic HCV infection.Peer reviewed: YesNRC publication: Ye

    Activity-based protein profiling of host\u2013virus interactions

    No full text
    Virologists have benefited from large-scale profiling methods to discover new host\u2013virus interactions and to learn about the mechanisms of pathogenesis. One such technique, referred to as activity-based protein profiling (ABPP), uses active site-directed probes to monitor the functional state of enzymes, taking into account post-translational interactions and modifications. ABPP gives insight into the catalytic activity of enzyme families that does not necessarily correlate with protein abundance. ABPP has been used to investigate several viruses and their interactions with their hosts. Differential enzymatic activity induced by viruses has been monitored using ABPP. In this review, we present recent advances and trends involving the use of ABPP methods in understanding host\u2013virus interactions and in identifying novel targets for diagnostic and therapeutic applications.Peer reviewed: YesNRC publication: Ye

    Genetic characterization of norovirus GII.4 variants circulating in Canada using a metagenomic technique

    No full text
    Abstract Background Human norovirus is the leading cause of viral gastroenteritis globally, and the GII.4 has been the most predominant genotype for decades. This genotype has numerous variants that have caused repeated epidemics worldwide. However, the molecular evolutionary signatures among the GII.4 variants have not been elucidated throughout the viral genome. Method A metagenomic, next-generation sequencing method, based on Illumina RNA-Seq, was applied to determine norovirus sequences from clinical samples. Results Herein, the obtained deep-sequencing data was employed to analyze full-genomic sequences from GII.4 variants prevailing in Canada from 2012 to 2016. Phylogenetic analysis demonstrated that the majority of these sequences belong to New Orleans 2009 and Sydney 2012 strains, and a recombinant sequence was also identified. Genome-wide similarity analyses implied that while the capsid gene is highly diverse among the isolates, the viral protease and polymerase genes remain relatively conserved. Numerous amino acid substitutions were observed at each putative antigenic epitope of the VP1 protein, whereas few amino acid changes were identified in the polymerase protein. Co-infection with other enteric RNA viruses was investigated and the astrovirus genome was identified in one of the samples. Conclusions Overall this study demonstrated the application of whole genome sequencing as an important tool in molecular characterization of noroviruses

    Hydrophobic triaryl-substituted \u3b2-lactams as activity-based probes for profiling eukaryotic enzymes and host-pathogen interactions

    No full text
    ABPP with \u3b2-lactams: We identified the eukaryotic targets of \u3b2-lactam-containing compounds by activity-based protein profiling. Using this method, we demonstrated that \u3b2-lactam-based activity probes can be applied to identify differentially active enzymes in different cell lines and during hepatitis C virus replication.Peer reviewed: YesNRC publication: Ye

    Rat Hepatitis E Virus in Norway Rats, Ontario, Canada, 2018–2021

    No full text
    We tested liver samples from 372 Norway rats (Rattus norvegicus) from southern Ontario, Canada, during 2018–2021 to investigate presence of hepatitis E virus infection. Overall, 21 (5.6%) rats tested positive for the virus. Sequence analysis demonstrated all infections to be rat hepatitis E virus (Rocahepevirus ratti genotype C1)

    A new chemical probe for phosphatidylinositol kinase activity

    No full text
    Phosphatidylinositol kinases (PIKs) are key enzymatic regulators of membrane phospholipids and membrane environments that control many aspects of cellular function, from signal transduction to secretion, through the Golgi apparatus. Here, we have developed a photoreactive "clickable" probe, PIK-BPyne, to report the activity of PIKs. We investigated the selectivity and efficiency of the probe to both inhibit and label PIKs, and we compared PIK-BPyne to a wortmannin activity-based probe also known to target PIKs. We found that PIK-BPyne can act as an effective in situ activity-based probe, and for the first time, report changes in PI4K-III\u3b2 activity induced by the hepatitis C virus. These results establish the utility of PIK-BPyne for activity-based protein profiling studies of PIK function in native biological systems. Active PIKs: Phosphatidylinositol kinases (PIKs) are key enzymatic regulators of membrane phospholipids and environments that control many aspects of cellular function, from signal transduction to secretion. We developed a photoreactive "clickable" probe, PIK-BPyne, to assess activity of PIKs in native biological systems and demonstrated its ability to monitor hepatitis C virus-induced changes in PIK-III\u3b2 activity.Peer reviewed: YesNRC publication: Ye

    Hepatitis C virus induced up-regulation of microRNA-27: a novel mechanism for hepatic steatosis

    No full text
    MicroRNAs (miRNAs) are small RNAs that posttranscriptionally regulate gene expression. Their aberrant expression is commonly linked with diseased states, including hepatitis C virus (HCV) infection. Herein, we demonstrate that HCV replication induces the expression of miR-27 in cell culture and in vivo HCV infectious models. Overexpression of the HCV proteins core and NS4B independently activates miR-27 expression. Furthermore, we establish that miR-27 overexpression in hepatocytes results in larger and more abundant lipid droplets, as observed by coherent anti-Stokes Raman scattering (CARS) microscopy. This hepatic lipid droplet accumulation coincides with miR-27b's repression of peroxisome proliferator-activated receptor (PPAR)-\u3b1 and angiopoietin-like protein 3 (ANGPTL3), known regulators of triglyceride homeostasis. We further demonstrate that treatment with a PPAR-\u3b1 agonist, bezafibrate, is able to reverse the miR-27b-induced lipid accumulation in Huh7 cells. This miR-27b-mediated repression of PPAR-\u3b1 signaling represents a novel mechanism of HCV-induced hepatic steatosis. This link was further demonstrated in vivo through the correlation between miR-27b expression levels and hepatic lipid accumulation in HCV-infected SCID-beige/Alb-uPa mice. Conclusion: Collectively, our results highlight HCV's up-regulation of miR-27 expression as a novel mechanism contributing to the development of hepatic steatosis.Peer reviewed: YesNRC publication: Ye
    corecore