8,331 research outputs found

    Wiretapping a hidden network

    Full text link
    We consider the problem of maximizing the probability of hitting a strategically chosen hidden virtual network by placing a wiretap on a single link of a communication network. This can be seen as a two-player win-lose (zero-sum) game that we call the wiretap game. The value of this game is the greatest probability that the wiretapper can secure for hitting the virtual network. The value is shown to equal the reciprocal of the strength of the underlying graph. We efficiently compute a unique partition of the edges of the graph, called the prime-partition, and find the set of pure strategies of the hider that are best responses against every maxmin strategy of the wiretapper. Using these special pure strategies of the hider, which we call omni-connected-spanning-subgraphs, we define a partial order on the elements of the prime-partition. From the partial order, we obtain a linear number of simple two-variable inequalities that define the maxmin-polytope, and a characterization of its extreme points. Our definition of the partial order allows us to find all equilibrium strategies of the wiretapper that minimize the number of pure best responses of the hider. Among these strategies, we efficiently compute the unique strategy that maximizes the least punishment that the hider incurs for playing a pure strategy that is not a best response. Finally, we show that this unique strategy is the nucleolus of the recently studied simple cooperative spanning connectivity game

    Size reconstructibility of graphs

    Get PDF
    The deck of a graph GG is given by the multiset of (unlabelled) subgraphs {Gv:vV(G)}\{G-v:v\in V(G)\}. The subgraphs GvG-v are referred to as the cards of GG. Brown and Fenner recently showed that, for n29n\geq29, the number of edges of a graph GG can be computed from any deck missing 2 cards. We show that, for sufficiently large nn, the number of edges can be computed from any deck missing at most 120n\frac1{20}\sqrt{n} cards.Comment: 15 page

    Labeling Schemes for Bounded Degree Graphs

    Full text link
    We investigate adjacency labeling schemes for graphs of bounded degree Δ=O(1)\Delta = O(1). In particular, we present an optimal (up to an additive constant) logn+O(1)\log n + O(1) adjacency labeling scheme for bounded degree trees. The latter scheme is derived from a labeling scheme for bounded degree outerplanar graphs. Our results complement a similar bound recently obtained for bounded depth trees [Fraigniaud and Korman, SODA 10], and may provide new insights for closing the long standing gap for adjacency in trees [Alstrup and Rauhe, FOCS 02]. We also provide improved labeling schemes for bounded degree planar graphs. Finally, we use combinatorial number systems and present an improved adjacency labeling schemes for graphs of bounded degree Δ\Delta with (e+1)n<Δn/5(e+1)\sqrt{n} < \Delta \leq n/5

    Edge Partitions of Optimal 22-plane and 33-plane Graphs

    Full text link
    A topological graph is a graph drawn in the plane. A topological graph is kk-plane, k>0k>0, if each edge is crossed at most kk times. We study the problem of partitioning the edges of a kk-plane graph such that each partite set forms a graph with a simpler structure. While this problem has been studied for k=1k=1, we focus on optimal 22-plane and 33-plane graphs, which are 22-plane and 33-plane graphs with maximum density. We prove the following results. (i) It is not possible to partition the edges of a simple optimal 22-plane graph into a 11-plane graph and a forest, while (ii) an edge partition formed by a 11-plane graph and two plane forests always exists and can be computed in linear time. (iii) We describe efficient algorithms to partition the edges of a simple optimal 22-plane graph into a 11-plane graph and a plane graph with maximum vertex degree 1212, or with maximum vertex degree 88 if the optimal 22-plane graph is such that its crossing-free edges form a graph with no separating triangles. (iv) We exhibit an infinite family of simple optimal 22-plane graphs such that in any edge partition composed of a 11-plane graph and a plane graph, the plane graph has maximum vertex degree at least 66 and the 11-plane graph has maximum vertex degree at least 1212. (v) We show that every optimal 33-plane graph whose crossing-free edges form a biconnected graph can be decomposed, in linear time, into a 22-plane graph and two plane forests

    Graph Treewidth and Geometric Thickness Parameters

    Full text link
    Consider a drawing of a graph GG in the plane such that crossing edges are coloured differently. The minimum number of colours, taken over all drawings of GG, is the classical graph parameter "thickness". By restricting the edges to be straight, we obtain the "geometric thickness". By further restricting the vertices to be in convex position, we obtain the "book thickness". This paper studies the relationship between these parameters and treewidth. Our first main result states that for graphs of treewidth kk, the maximum thickness and the maximum geometric thickness both equal k/2\lceil{k/2}\rceil. This says that the lower bound for thickness can be matched by an upper bound, even in the more restrictive geometric setting. Our second main result states that for graphs of treewidth kk, the maximum book thickness equals kk if k2k \leq 2 and equals k+1k+1 if k3k \geq 3. This refutes a conjecture of Ganley and Heath [Discrete Appl. Math. 109(3):215-221, 2001]. Analogous results are proved for outerthickness, arboricity, and star-arboricity.Comment: A preliminary version of this paper appeared in the "Proceedings of the 13th International Symposium on Graph Drawing" (GD '05), Lecture Notes in Computer Science 3843:129-140, Springer, 2006. The full version was published in Discrete & Computational Geometry 37(4):641-670, 2007. That version contained a false conjecture, which is corrected on page 26 of this versio

    Changing nurses' views of the therapeutic environment: randomised controlled trial

    Get PDF
    BACKGROUND: Although patients value evidence-based therapeutic activities, little is known about nurses' perceptions.AimsTo investigate whether implementing an activities training programme would positively alter staff perceptions of the ward or be detrimental through the increased workload (trial registration: ISRCTN 06545047). METHOD: We conducted a stepped wedge cluster randomised trial involving 16 wards with psychology-led nurse training as the intervention. The main outcome was a staff self-report measure of perceptions of the ward (VOTE) and secondary outcomes measuring potential deterioration were the Index of Work Satisfaction (IWS) and the Maslach Burnout Inventory (MBI). Data were analysed using mixed-effects regression models, with repeated assessments from staff over time. RESULTS: There were 1075 valid outcome measurements from 539 nursing staff. VOTE scores did not change over time (standardised effect size 0.04, 95% CI -0.09 to 0.18, P = 0.54), neither did IWS or MBI scores (IWS, standardised effect size 0.02, 95% CI -0.11 to 0.16, P = 0.74; MBI standardised effect size -0.09, 95% CI -0.24 to 0.06, P = 0.24). There was a mean increase of 1.5 activities per ward (95% CI -0.4 to 3.4, P = 0.12) and on average 6.3 more patients attended groups (95% CI -4.1 to 16.6, P = 0.23) following training. Staff feedback on training was positive. CONCLUSIONS: Our training programme did not change nurses' perceptions of the ward, job satisfaction or burnout. During the study period many service changes occurred, most having a negative impact through increased pressure on staffing, patient mix and management so it is perhaps unsurprising that we found no benefits or reduction in staff skill.Declaration of interestNone

    The generalized 3-edge-connectivity of lexicographic product graphs

    Full text link
    The generalized kk-edge-connectivity λk(G)\lambda_k(G) of a graph GG is a generalization of the concept of edge-connectivity. The lexicographic product of two graphs GG and HH, denoted by GHG\circ H, is an important graph product. In this paper, we mainly study the generalized 3-edge-connectivity of GHG \circ H, and get upper and lower bounds of λ3(GH)\lambda_3(G \circ H). Moreover, all bounds are sharp.Comment: 14 page

    Inclusive One Jet Production With Multiple Interactions in the Regge Limit of pQCD

    Full text link
    DIS on a two nucleon system in the regge limit is considered. In this framework a review is given of a pQCD approach for the computation of the corrections to the inclusive one jet production cross section at finite number of colors and discuss the general results.Comment: 4 pages, latex, aicproc format, Contribution to the proceedings of "Diffraction 2008", 9-14 Sep. 2008, La Londe-les-Maures, Franc

    Nash embedding and equilibrium in pure quantum states

    Full text link
    With respect to probabilistic mixtures of the strategies in non-cooperative games, quantum game theory provides guarantee of fixed-point stability, the so-called Nash equilibrium. This permits players to choose mixed quantum strategies that prepare mixed quantum states optimally under constraints. In this letter, we show that fixed-point stability of Nash equilibrium can also be guaranteed for pure quantum strategies via an application of the Nash embedding theorem, permitting players to prepare pure quantum states optimally under constraints.Comment: 7 pages, 1 figure. arXiv admin note: text overlap with arXiv:1609.0836

    Do logarithmic proximity measures outperform plain ones in graph clustering?

    Full text link
    We consider a number of graph kernels and proximity measures including commute time kernel, regularized Laplacian kernel, heat kernel, exponential diffusion kernel (also called "communicability"), etc., and the corresponding distances as applied to clustering nodes in random graphs and several well-known datasets. The model of generating random graphs involves edge probabilities for the pairs of nodes that belong to the same class or different predefined classes of nodes. It turns out that in most cases, logarithmic measures (i.e., measures resulting after taking logarithm of the proximities) perform better while distinguishing underlying classes than the "plain" measures. A comparison in terms of reject curves of inter-class and intra-class distances confirms this conclusion. A similar conclusion can be made for several well-known datasets. A possible origin of this effect is that most kernels have a multiplicative nature, while the nature of distances used in cluster algorithms is an additive one (cf. the triangle inequality). The logarithmic transformation is a tool to transform the first nature to the second one. Moreover, some distances corresponding to the logarithmic measures possess a meaningful cutpoint additivity property. In our experiments, the leader is usually the logarithmic Communicability measure. However, we indicate some more complicated cases in which other measures, typically, Communicability and plain Walk, can be the winners.Comment: 11 pages, 5 tables, 9 figures. Accepted for publication in the Proceedings of 6th International Conference on Network Analysis, May 26-28, 2016, Nizhny Novgorod, Russi
    corecore