8,331 research outputs found
Wiretapping a hidden network
We consider the problem of maximizing the probability of hitting a
strategically chosen hidden virtual network by placing a wiretap on a single
link of a communication network. This can be seen as a two-player win-lose
(zero-sum) game that we call the wiretap game. The value of this game is the
greatest probability that the wiretapper can secure for hitting the virtual
network. The value is shown to equal the reciprocal of the strength of the
underlying graph.
We efficiently compute a unique partition of the edges of the graph, called
the prime-partition, and find the set of pure strategies of the hider that are
best responses against every maxmin strategy of the wiretapper. Using these
special pure strategies of the hider, which we call
omni-connected-spanning-subgraphs, we define a partial order on the elements of
the prime-partition. From the partial order, we obtain a linear number of
simple two-variable inequalities that define the maxmin-polytope, and a
characterization of its extreme points.
Our definition of the partial order allows us to find all equilibrium
strategies of the wiretapper that minimize the number of pure best responses of
the hider. Among these strategies, we efficiently compute the unique strategy
that maximizes the least punishment that the hider incurs for playing a pure
strategy that is not a best response. Finally, we show that this unique
strategy is the nucleolus of the recently studied simple cooperative spanning
connectivity game
Size reconstructibility of graphs
The deck of a graph is given by the multiset of (unlabelled) subgraphs
. The subgraphs are referred to as the cards of .
Brown and Fenner recently showed that, for , the number of edges of a
graph can be computed from any deck missing 2 cards. We show that, for
sufficiently large , the number of edges can be computed from any deck
missing at most cards.Comment: 15 page
Labeling Schemes for Bounded Degree Graphs
We investigate adjacency labeling schemes for graphs of bounded degree
. In particular, we present an optimal (up to an additive
constant) adjacency labeling scheme for bounded degree trees.
The latter scheme is derived from a labeling scheme for bounded degree
outerplanar graphs. Our results complement a similar bound recently obtained
for bounded depth trees [Fraigniaud and Korman, SODA 10], and may provide new
insights for closing the long standing gap for adjacency in trees [Alstrup and
Rauhe, FOCS 02]. We also provide improved labeling schemes for bounded degree
planar graphs. Finally, we use combinatorial number systems and present an
improved adjacency labeling schemes for graphs of bounded degree with
Edge Partitions of Optimal -plane and -plane Graphs
A topological graph is a graph drawn in the plane. A topological graph is
-plane, , if each edge is crossed at most times. We study the
problem of partitioning the edges of a -plane graph such that each partite
set forms a graph with a simpler structure. While this problem has been studied
for , we focus on optimal -plane and -plane graphs, which are
-plane and -plane graphs with maximum density. We prove the following
results. (i) It is not possible to partition the edges of a simple optimal
-plane graph into a -plane graph and a forest, while (ii) an edge
partition formed by a -plane graph and two plane forests always exists and
can be computed in linear time. (iii) We describe efficient algorithms to
partition the edges of a simple optimal -plane graph into a -plane graph
and a plane graph with maximum vertex degree , or with maximum vertex
degree if the optimal -plane graph is such that its crossing-free edges
form a graph with no separating triangles. (iv) We exhibit an infinite family
of simple optimal -plane graphs such that in any edge partition composed of
a -plane graph and a plane graph, the plane graph has maximum vertex degree
at least and the -plane graph has maximum vertex degree at least .
(v) We show that every optimal -plane graph whose crossing-free edges form a
biconnected graph can be decomposed, in linear time, into a -plane graph and
two plane forests
Graph Treewidth and Geometric Thickness Parameters
Consider a drawing of a graph in the plane such that crossing edges are
coloured differently. The minimum number of colours, taken over all drawings of
, is the classical graph parameter "thickness". By restricting the edges to
be straight, we obtain the "geometric thickness". By further restricting the
vertices to be in convex position, we obtain the "book thickness". This paper
studies the relationship between these parameters and treewidth.
Our first main result states that for graphs of treewidth , the maximum
thickness and the maximum geometric thickness both equal .
This says that the lower bound for thickness can be matched by an upper bound,
even in the more restrictive geometric setting. Our second main result states
that for graphs of treewidth , the maximum book thickness equals if and equals if . This refutes a conjecture of Ganley and
Heath [Discrete Appl. Math. 109(3):215-221, 2001]. Analogous results are proved
for outerthickness, arboricity, and star-arboricity.Comment: A preliminary version of this paper appeared in the "Proceedings of
the 13th International Symposium on Graph Drawing" (GD '05), Lecture Notes in
Computer Science 3843:129-140, Springer, 2006. The full version was published
in Discrete & Computational Geometry 37(4):641-670, 2007. That version
contained a false conjecture, which is corrected on page 26 of this versio
Changing nurses' views of the therapeutic environment: randomised controlled trial
BACKGROUND: Although patients value evidence-based therapeutic activities, little is known about nurses' perceptions.AimsTo investigate whether implementing an activities training programme would positively alter staff perceptions of the ward or be detrimental through the increased workload (trial registration: ISRCTN 06545047). METHOD: We conducted a stepped wedge cluster randomised trial involving 16 wards with psychology-led nurse training as the intervention. The main outcome was a staff self-report measure of perceptions of the ward (VOTE) and secondary outcomes measuring potential deterioration were the Index of Work Satisfaction (IWS) and the Maslach Burnout Inventory (MBI). Data were analysed using mixed-effects regression models, with repeated assessments from staff over time. RESULTS: There were 1075 valid outcome measurements from 539 nursing staff. VOTE scores did not change over time (standardised effect size 0.04, 95% CI -0.09 to 0.18, P = 0.54), neither did IWS or MBI scores (IWS, standardised effect size 0.02, 95% CI -0.11 to 0.16, P = 0.74; MBI standardised effect size -0.09, 95% CI -0.24 to 0.06, P = 0.24). There was a mean increase of 1.5 activities per ward (95% CI -0.4 to 3.4, P = 0.12) and on average 6.3 more patients attended groups (95% CI -4.1 to 16.6, P = 0.23) following training. Staff feedback on training was positive. CONCLUSIONS: Our training programme did not change nurses' perceptions of the ward, job satisfaction or burnout. During the study period many service changes occurred, most having a negative impact through increased pressure on staffing, patient mix and management so it is perhaps unsurprising that we found no benefits or reduction in staff skill.Declaration of interestNone
The generalized 3-edge-connectivity of lexicographic product graphs
The generalized -edge-connectivity of a graph is a
generalization of the concept of edge-connectivity. The lexicographic product
of two graphs and , denoted by , is an important graph
product. In this paper, we mainly study the generalized 3-edge-connectivity of
, and get upper and lower bounds of .
Moreover, all bounds are sharp.Comment: 14 page
Inclusive One Jet Production With Multiple Interactions in the Regge Limit of pQCD
DIS on a two nucleon system in the regge limit is considered. In this
framework a review is given of a pQCD approach for the computation of the
corrections to the inclusive one jet production cross section at finite number
of colors and discuss the general results.Comment: 4 pages, latex, aicproc format, Contribution to the proceedings of
"Diffraction 2008", 9-14 Sep. 2008, La Londe-les-Maures, Franc
Nash embedding and equilibrium in pure quantum states
With respect to probabilistic mixtures of the strategies in non-cooperative
games, quantum game theory provides guarantee of fixed-point stability, the
so-called Nash equilibrium. This permits players to choose mixed quantum
strategies that prepare mixed quantum states optimally under constraints. In
this letter, we show that fixed-point stability of Nash equilibrium can also be
guaranteed for pure quantum strategies via an application of the Nash embedding
theorem, permitting players to prepare pure quantum states optimally under
constraints.Comment: 7 pages, 1 figure. arXiv admin note: text overlap with
arXiv:1609.0836
Do logarithmic proximity measures outperform plain ones in graph clustering?
We consider a number of graph kernels and proximity measures including
commute time kernel, regularized Laplacian kernel, heat kernel, exponential
diffusion kernel (also called "communicability"), etc., and the corresponding
distances as applied to clustering nodes in random graphs and several
well-known datasets. The model of generating random graphs involves edge
probabilities for the pairs of nodes that belong to the same class or different
predefined classes of nodes. It turns out that in most cases, logarithmic
measures (i.e., measures resulting after taking logarithm of the proximities)
perform better while distinguishing underlying classes than the "plain"
measures. A comparison in terms of reject curves of inter-class and intra-class
distances confirms this conclusion. A similar conclusion can be made for
several well-known datasets. A possible origin of this effect is that most
kernels have a multiplicative nature, while the nature of distances used in
cluster algorithms is an additive one (cf. the triangle inequality). The
logarithmic transformation is a tool to transform the first nature to the
second one. Moreover, some distances corresponding to the logarithmic measures
possess a meaningful cutpoint additivity property. In our experiments, the
leader is usually the logarithmic Communicability measure. However, we indicate
some more complicated cases in which other measures, typically, Communicability
and plain Walk, can be the winners.Comment: 11 pages, 5 tables, 9 figures. Accepted for publication in the
Proceedings of 6th International Conference on Network Analysis, May 26-28,
2016, Nizhny Novgorod, Russi
- …